

**NivoRadar R** Four-wire: 4 ... 20 mA/HART; 9.6 ... 48 V DC; 20 ... 42 V AC; 50/60 Hz **series NR 8500** 



|                           | Technical information / Instruction manual | LEVEL. UP TO THE MAX. |
|---------------------------|--------------------------------------------|-----------------------|
| Contents                  |                                            |                       |
| About this document       |                                            | page<br>3             |
| For your safety           |                                            | 4                     |
| Product description       |                                            | 6                     |
| Technical data            |                                            | 10                    |
| Setup - the most import:  | ant steps                                  | 21                    |
| Mounting                  |                                            | 22                    |
| Connecting to power sup   | ply                                        | 36                    |
| Access protection, IT sec | urity                                      | 41                    |
| Set up with the display a | nd adjustment module                       | 43                    |
| Setup with smartphone/1   | ablet (Bluetooth)                          | 72                    |
| Set up with PC/notebook   |                                            | 74                    |
| Menu overview             |                                            | 77                    |
| Set up with other system  | IS                                         | 89                    |
| Diagnosis, asset manager  | ment and service                           | 90                    |
| Dismount                  |                                            | 102                   |
| Certificates and approval | S                                          | 103                   |

Certificates and approvals







# Contents

Supplement





# About this document

# Function

This instruction provides all the information you need for mounting, connection and setup as well as important instructions for maintenance, fault rectification, safety and the exchange of parts. Please read this information before putting the instrument into operation and keep this manual accessible in the immediate vicinity of the device.

# Target group

This instruction manual is directed to trained personnel. The contents of this manual must be made available to the qualified personnel and implemented.

# Symbols used



**Information, note, tip:** This symbol indicates helpful additional information and tips for successful work.

**Note:** This symbol indicates notes to prevent failures, malfunctions, damage to devices or plants.



**Caution:** Non-observance of the information marked with this symbol may result in personal injury.



**Warning:** Non-observance of the information marked with this symbol may result in serious or fatal personal injury.

symbol results in serious or fatal personal injury.



Ex applications

This symbol indicates special instructions for Ex applications.

**Danger:** Non-observance of the information marked with this

List

The dot set in front indicates a list with no implied sequence.

1 Sequence of actions

Numbers set in front indicate successive steps in a procedure.



## Disposal

This symbol indicates special instructions for disposal.





For your safety

# Authorised personnel

All operations described in this documentation must be carried out only by trained and authorized personnel.

During work on and with the device, the required personal protective equipment must always be worn.

# Appropriate use

NivoRadar 8500 is a sensor for continuous level measurement.

You can find detailed information about the area of application in chapter "*Product description*".

Operational reliability is ensured only if the instrument is properly used according to the specifications in this document as well as possible supplementary instructions.

# Warning about incorrect use

Inappropriate or incorrect use of this product can give rise to application-specific hazards, e.g. vessel overfill through incorrect mounting or adjustment. Damage to property and persons or environmental contamination can result. Also, the protective characteristics of the instrument can be impaired.

# **General safety instructions**

This is a state-of-the-art instrument complying with all prevailing regulations and directives. The instrument must only be operated in a technically flawless and reliable condition. The operating company is responsible for the trouble-free operation of the instrument. When measuring aggressive or corrosive media that can cause a dangerous situation if the instrument malfunctions, the operating company has to implement suitable measures to make sure the instrument is functioning properly.

The safety instructions in this instructions manual, the national installation standards as well as the valid safety regulations and accident prevention rules must be observed.

For safety and warranty reasons, any invasive work on the device beyond that described in this instructions manual may be carried out only by personnel authorised by us. Arbitrary conversions or modifications are explicitly forbidden. For safety reasons, only the accessory specified by us must be used.

To avoid any danger, the safety approval markings and safety tips on the device must also be observed.

The low transmitting power of the radar sensor is far below the internationally approved limits. No health impairments are to be expected with intended use. The band range of





# For your safety

the measuring frequency can be found in chapter "*Technical data*".

#### Mode of operation - Radar signal

Country or region specific settings for the radar signals are determined via the mode. The operating mode must be set in the operating menu via the respective operating tool at the beginning of the setup.



#### Caution:

Operating the device without selecting the relevant mode constitutes a violation of the regulations of the radio approvals of the respective country or region.

# Installation and operation in the USA and Canada

This information is only valid for USA and Canada. Hence the following text is only available in the English language.

Installations in the US shall comply with the relevant requirements of the National Electrical Code (NEC - NFPA 70) (USA).

Installations in Canada shall comply with the relevant requirements of the Canadian Electrical Code (CEC Part I) (Canada).

A Class 2 power supply unit has to be used for the installation in the USA and Canada.





# Product description

# Configuration

# The scope of delivery encompasses: Scope of delivery • Radar sensor, possibly with accessories • Information sheet "PINs and Codes" (with Bluetooth versions) with: Bluetooth access code • Information sheet "Access protection" (with Bluetooth versions) with: - Bluetooth access code Emergency Bluetooth unlock code Emergency device code Documentation - Quick setup guide - Instructions for optional instrument components - Ex-specific "Safety instructions" (with Ex versions) - Safety Manual (with SIL version) - Radio licenses - If necessary, further certificates Information: Optional instrument features are also described in this instructions. The respective scope of delivery results from the order specification. The type label contains the most important data for identifi-Type label cation and use of the instrument: Instrument type Information about approvals Configuration information Technical data Serial number of the instrument • QR code for device identification • Numerical code for Bluetooth access (optional) Manufacturer information **Documents and software** Further information can be found on our homepage. There you will find the documentation and further information about the device. **Principle of operation** The NivoRadar 8500 is a radar sensor for continuous level Application area measurement of liquids under different process conditions. The instrument is available with high temperature horn an-Antenna system tenna.





| Product description  |                                                                                                                                                                                                                                                                                                            |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Functional principle | The instrument emits a continuous, frequency-modulated ra-<br>dar signal through its antenna. The emitted signal is reflected<br>by the medium and received by the antenna as an echo with<br>modified frequency. The frequency change is proportional to<br>the distance and is converted into the level. |
|                      | Adjustment                                                                                                                                                                                                                                                                                                 |
| Local adjustment     | On-site adjustment of the device is carried out via the inte-<br>grated display and adjustment unit.                                                                                                                                                                                                       |
| i                    | <b>Note:</b><br>The housing with display and adjustment unit can be rotated<br>by 360° for optimum readability and operability.                                                                                                                                                                            |
| Wireless adjustment  | Devices with integrated Bluetooth module can be adjusted<br>wirelessly via standard adjustment tools:<br>• Smartphone/tablet (iOS or Android operating system)<br>• PC/notebook (Windows operating system)                                                                                                 |
|                      |                                                                                                                                                                                                                                                                                                            |



Fig. 1: Wireless connection to standard operating devices with integrated Bluetooth  $\ensuremath{\mathsf{LE}}$ 

- 1 Sensor
- 2 Smartphone/Tablet
- 3 PC/Notebook

Adjustment via the signal cable Devices with signal output 4 ... 20 mA/HART can also be operated via a signal cable. This is done via an interface adapter and a PC/notebook using DTM/PACTware.

# Packaging, transport and storage

Packaging

Your instrument was protected by packaging during transport. Its capacity to handle normal loads during transport is assured by a test based on ISO 4180.





| Product description                          |                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                              | The packaging consists of environment-friendly, recyclable<br>cardboard. For special versions, PE foam or PE foil is also<br>used. Dispose of the packaging material via specialised recy-<br>cling companies.                                                                                                                                                                                                             |  |
| Transport                                    | Transport must be carried out in due consideration of the notes on the transport packaging. Nonobservance of these instructions can cause damage to the device.                                                                                                                                                                                                                                                            |  |
| Transport inspection                         | The delivery must be checked for completeness and possible<br>transit damage immediately at receipt. Ascertained transit<br>damage or concealed defects must be appropriately dealt<br>with.                                                                                                                                                                                                                               |  |
| Storage                                      | Up to the time of installation, the packages must be left<br>closed and stored according to the orientation and storage<br>markings on the outside.<br>Unless otherwise indicated, the packages must be stored<br>only under the following conditions:<br>• Not in the open<br>• Dry and dust free<br>• Not exposed to corrosive media<br>• Protected against solar radiation<br>• Avoiding mechanical shock and vibration |  |
| Storage and transport temperature            | <ul> <li>Storage and transport temperature see chapter "Technical data - Ambient conditions"</li> <li>Relative moisture 20 85 %</li> </ul>                                                                                                                                                                                                                                                                                 |  |
| Lifting and carrying                         | With instrument weights of more than 18 kg (39.68 lbs) suit-<br>able and approved equipment must be used for lifting and<br>carrying.<br>Accessories<br>The instructions for the listed accessories can be found in<br>the download area on our homepage.                                                                                                                                                                  |  |
| Display and adjustment<br>module             | The display and adjustment module is used for measured<br>value indication, adjustment and diagnosis.<br>The integrated Bluetooth module (optional) enables wireless<br>adjustment via standard adjustment devices.                                                                                                                                                                                                        |  |
| NivoTec 9000                                 | NivoTec 9000 is suitable for measured value indication and adjustment of sensors with HART protocol. It is looped into the 4 20 mA/HART signal cable.                                                                                                                                                                                                                                                                      |  |
| Welded socket, threaded and hygienic adapter | Welded sockets are used to connect the devices to the process.                                                                                                                                                                                                                                                                                                                                                             |  |





| Product description |                                                                                                                                                                            |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | Threaded and hygienic adapters enable simple adaptation<br>of devices with standard threaded fittings to process-side<br>hygiene connections.                              |
| Flanges             | Screwed flanges are available in different versions accord-<br>ing to the following standards: DIN 2501, EN 1092-1, BS 10,<br>ASME B 16.5, JIS B 2210-1984, GOST 12821-80. |





# **Technical data**

# **Technical data**

# Note for approved instruments

The technical data in the respective safety instructions which are included in delivery are valid for approved instruments (e.g. with Ex approval). These data can differ from the data listed herein, for example regarding the process conditions or the voltage supply.

All approval documents can be downloaded from our homepage.

| Materials and weights                                                                    |                                                                  |
|------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Materials, wetted parts                                                                  |                                                                  |
| Horn antenna                                                                             |                                                                  |
| – Antenna horn                                                                           | 316L, 1.4848                                                     |
| – Impedance cone                                                                         | Ceramic (99.7 % Al <sub>2</sub> O <sub>3</sub> )                 |
| – Seal up to +450 °C                                                                     | Graphite                                                         |
| Materials, non-wetted parts                                                              |                                                                  |
| Housing                                                                                  |                                                                  |
| – Aluminium die-cast housing                                                             | Aluminium die-casting AlSi10Mg, powder-coated (Basis: Polyester) |
| – Stainless steel housing                                                                | 316L                                                             |
| – Cable gland, blind plug cable<br>gland                                                 | PA, stainless steel, brass                                       |
| – Sealing, cable gland                                                                   | NBR                                                              |
| - Inspection window housing cover                                                        | Glass                                                            |
| – Ground terminal                                                                        | 316L                                                             |
| Weights                                                                                  |                                                                  |
| <ul> <li>Instrument (depending on hous-<br/>ing, process fitting and antenna)</li> </ul> | approx. 2 17.2 kg (4.409 37.92 lbs)                              |
| Torques                                                                                  |                                                                  |

Max. torque, thread with integrated antenna system - G11/2 200 Nm (147.5 lbf ft) Flange - Torque According to the current standards or at least according to the specifications on the flange. Max. torque for NPT cable glands and Conduit tubes - Aluminium/Stainless steel hous- 50 Nm (36.88 lbf ft) ing

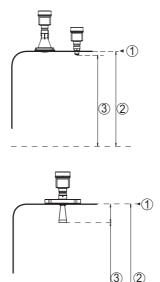
# NivoRadar<sup>®</sup>

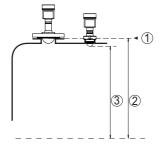
Four-wire: 4 ... 20 mA/HART; 9.6 ... 48 V DC; 20 ... 42 V AC; 50/60 Hz Series NR 8500 Technical information / Instruction manual



# Technical data

Torque housing locking


- Recommended torque locking
   1 Nm (1.475 lbf ft)
- Max. torque locking screw
- 2 Nm (0.738 lbf ft)


### Input variable

screw

Measured variable

The measured quantity is the distance between the end of the sensor antenna and the medium surface. The reference plane for the measurement and the usable measuring range are dependent on the antenna system.





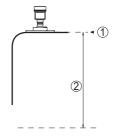



Fig. 2: Data of the input variable

- 1 Reference plane (depending on the antenna system)
- 2 Measured variable, max. measuring range
- 3 Utilisable measuring range (depending on the antenna version)

Max. measuring range 120 m (393.7 ft)

Recommended measuring range, depending on the antenna version and size<sup>1)2)</sup>

<sup>1)</sup> With good reflection conditions, larger measuring ranges are also possible.

<sup>2)</sup> The specified values correspond to the default values on delivery.





# **Technical data**

| Size                                                  |                         | Recommended measuring range                |
|-------------------------------------------------------|-------------------------|--------------------------------------------|
|                                                       |                         | up to                                      |
| ø 40 mm                                               |                         | 30 m (98.42 ft)                            |
| ø 48 mm                                               |                         |                                            |
| ø 75 mm                                               |                         | 120 m (393.7 ft)                           |
| blocking distance <sup>1)</sup>                       |                         |                                            |
| – Modes 1, 2, 4                                       | 0 mm (                  | (0 in)                                     |
| – Mode 3                                              | ≥ 250 r                 | mm (9.843 in)                              |
| Switch-on phase                                       |                         |                                            |
| Run-up time t (U <sub>B</sub> ≥ 24 V DC)              | $\le 15 \ { m s}^{2)}$  |                                            |
| Starting current for run-up time                      | ≤ 3.6 m                 | A                                          |
| Output variable                                       |                         |                                            |
| Output signal                                         | 4 20                    | mA/HART                                    |
| Range of the output signal                            | 3.8 2                   | 20.5 mA/HART (default setting)             |
| Signal resolution                                     | 0.3 µA                  |                                            |
| Resolution, digital                                   |                         | 0.039 in)                                  |
| Fault signal, current output (adjust- ≤<br>able)      |                         | nA, $\ge$ 21 mA, last valid measured value |
| Max. output current                                   | 22 mA                   |                                            |
| Starting current                                      | ≤ 3.6 m                 | nA; ≤ 10 mA for 5 ms after switching on    |
| Load                                                  | See loa                 | ad resistance under Power supply           |
| Damping (63 % of the input vari-<br>able), adjustable | 0 999 s                 |                                            |
| HART output values according to HA                    | RT 7.0 <sup>3)</sup>    |                                            |
| – PV (Primary Value)                                  | Lin. pe                 | rcent                                      |
| – SV (Secondary Value)                                | Distanc                 | ce                                         |
| – TV (Third Value)                                    | Measur                  | rement reliability                         |
| – QV (Fourth Value)                                   | Electronics temperature |                                            |
| Fulfilled HART specification                          | 7.6                     |                                            |
|                                                       |                         |                                            |

<sup>1)</sup> Depending on the operating conditions

 $^2)$  Reference conditions: U\_{\_{\rm B}} = 24 V DC, ambient temperature 20 °C (68 °F)  $^3)$  Default values can be assigned individually.





# Technical data

Further information on Manufacturer See website of FieldComm Group ID, Device ID, Device Revision

| Deviation (according to DIN EN 60770-1)                  |                                                               |  |
|----------------------------------------------------------|---------------------------------------------------------------|--|
| Process reference conditions according to DIN EN 61298-1 |                                                               |  |
| – Temperature                                            | +18 +30 °C (+64 +86 °F)                                       |  |
| – Relative humidity                                      | 45 75 %                                                       |  |
| – Air pressure                                           | 860 1060 mbar/86 106 kPa (12.5 15.4 psig)                     |  |
| Installation reference conditions $^{1)}$                |                                                               |  |
| – Min. distance to internal instal-<br>lations           | > 200 mm (7.874 in)                                           |  |
| - Reflector                                              | Flat plate reflector                                          |  |
| – False reflections                                      | Biggest false signal, 20 dB smaller than the useful<br>signal |  |
| Deviation with liquids                                   | ≤ 1 mm (meas. distance > 0.25 m/0.8202 ft)                    |  |
| Non-repeatability <sup>2)</sup>                          | ≤ 1 mm                                                        |  |
| blocking distance                                        | 150 mm (5.906 in)                                             |  |

#### Variables influencing measurement accuracy<sup>3)</sup>

#### Specifications apply to the digital measured value

Temperature drift - Digital output < 3 mm/10 K, max. 10 mm

 Additional deviation through elec- None tromagnetic interference

### Specifications apply also to the current output

| Temperature drift - Current output                                 | < 0.03 %/10 K or max. 0.3 % relating to the 16.7 mA span |
|--------------------------------------------------------------------|----------------------------------------------------------|
| Deviation in the current output due to digital/analogue conversion | < 15 μΑ                                                  |

Additional deviation through electromagnetic interference

– According to NAMUR NE 21  $\,$  < 80  $\mu$ A

- According to EN 61326-3-1 < 80 μA
- According to IACS E10 (shipbuild- < 80 μA ing)</li>

<sup>&</sup>lt;sup>1)</sup> In case of deviations from reference conditions, the offset due to installation can be up to ± 4 mm. This offset can be compensated by the adjustment.

<sup>&</sup>lt;sup>2)</sup> Already included in the meas. deviation

<sup>&</sup>lt;sup>3)</sup> Determination of the temperature drift acc. to the limit point method





## Technical data

| Characteristics and performance data                                |                            |  |
|---------------------------------------------------------------------|----------------------------|--|
| Measuring frequency                                                 | W-band (80 GHz technology) |  |
| Measuring cycle time <sup>1)</sup>                                  | approx. 200 ms             |  |
| Step response time <sup>2)</sup>                                    | ≤ 3 s                      |  |
| Beam angle <sup>3)</sup>                                            |                            |  |
| – ø 40 mm                                                           | 7°                         |  |
| – ø 48 mm                                                           | 6°                         |  |
| – ø 75 mm                                                           | 3°                         |  |
| Emitted HF power (depending on the                                  | parameter setting)4)       |  |
| <ul> <li>Average spectral transmission<br/>power density</li> </ul> | -3 dBm/MHz EIRP            |  |
| <ul> <li>Max. spectral transmission power<br/>density</li> </ul>    | +34 dBm/50 MHz EIRP        |  |
| <ul> <li>Max. power density at a distance<br/>of 1 m</li> </ul>     | < 3 µW/cm <sup>2</sup>     |  |

#### Ambient conditions

Ambient, storage and transport temperature

### **Process conditions - Temperature**

For the process conditions, please also note the specifications on the type label. The lowest value (amount) always applies.

-40 ... +80 °C (-40 ... +176 °F)

| Antenna material                                                                             |          | Process temperature (measured on the process fitting) |
|----------------------------------------------------------------------------------------------|----------|-------------------------------------------------------|
| Antenna horn: 316L, imped-<br>ance cone: ceramic (99.7 %<br>Al <sub>2</sub> O <sub>3</sub> ) | Graphite | -196 +450 °C (-321 +842 °F)                           |

- <sup>1)</sup> With operating voltage  $U_{p} \ge 24$  V DC
- <sup>2)</sup> Time span after a sudden distance change from 1 m to 5 m until the output signal reaches 90 % of the final value for the first time (IEC 61298-2). Valid with operating voltage U<sub>0</sub> ≥ 24 V DC
- <sup>3)</sup> Outside the specified beam angle, the energy level of the radar signal is 50% (-3 dB) less.
- <sup>4)</sup> EIRP: Equivalent Isotropic Radiated Power





# Technical data

Derating, ambient temperature

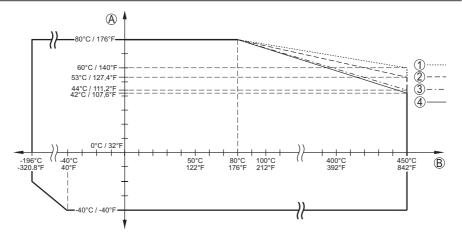



Fig. 3: Derating ambient temperature, horn antenna up to +450 °C (+842 °F)

- A Ambient temperature
- B Process temperature
- 1 Aluminium housing
- 2 -
- 3 -
- 4 Stainless steel housing (electropolished)

#### **Process conditions - Pressure**

For the process conditions, please also note the specifications on the type label. The lowest value (amount) always applies.

up to +450 °C (+842 °F)

-1 ... 160 bar (-100 ... 16000 kPa/-14.5 ... 2320 psig)

## **Mechanical environmental conditions**

#### Vibration resistance (Tested according to IEC 60068-2-6, 5 ... 200 Hz)

| Antenna version | Housing         | Vibration resistance |
|-----------------|-----------------|----------------------|
| Thread          | Aluminium       | 5 g                  |
|                 | Stainless steel | 2 g                  |
| Flange          | Aluminium       | 5 g                  |
|                 | Stainless steel | 2 g                  |





# **Technical data**

#### Shock resistance (Tested according to IEC 60068-2-27)

| Housing         | Shock resistance                                 |
|-----------------|--------------------------------------------------|
| Aluminium       |                                                  |
| Stainless steel | 10 g/11 ms, 30 g/6 ms, 50 g/2.3 ms <sup>1)</sup> |

#### **Electromechanical data**

Options of the cable entry

- Cable entry
- Cable gland
- Blind plug
- Closing cap

M20 x 1.5; 1/2 NPT (cable ø see below table) M20 x 1.5: 1/2 NPT

M20 x 1.5; 1/2 NPT

1/2 NPT

|                           | Material<br>seal insert | Cable diameter |              |              |         |              |
|---------------------------|-------------------------|----------------|--------------|--------------|---------|--------------|
|                           |                         | 4.5 8.5 mm     | 5 9 mm       | 6 12 mm      | 7 12 mm | 10 14 mm     |
| PA                        | NBR                     | -              | $\checkmark$ | $\checkmark$ | -       | $\checkmark$ |
| Brass, nick-<br>el-plated | NBR                     | $\checkmark$   | $\checkmark$ | $\checkmark$ | -       | -            |
| Stainless<br>steel        | NBR                     | -              | $\checkmark$ | $\checkmark$ | -       | $\checkmark$ |

Wire cross-section (spring-loaded terminals)

- Massive wire, stranded wire

- Stranded wire with end sleeve

0.2 ... 2.5 mm<sup>2</sup> (AWG 24 ... 14)

0.2 ... 1.5 mm<sup>2</sup> (AWG 24 ... 16)

| Interface to the external display and adjustment unit |                                |                                 |  |  |
|-------------------------------------------------------|--------------------------------|---------------------------------|--|--|
| Data transmission                                     | Digital (I <sup>2</sup> C-Bus) | Digital (I²C-Bus)               |  |  |
| Connection cable Four-wire                            |                                |                                 |  |  |
| Sensor version                                        | Configurat                     | Configuration, connection cable |  |  |
|                                                       | Max. cable length              | Shielded                        |  |  |
| 4 20 mA/HART                                          | 50 m                           | •                               |  |  |

#### **Integrated clock**

Date format Day.Month.Year Time format 12 h/24 h

<sup>1)</sup> For hygienic fittings with clamp connection, use suitable, stable tension clamps to ensure the vibration resistance.



 
 Four-wire: 4 ... 20 mA/HART; 9.6 ... 48 V DC;

 20 ... 42 V AC; 50/60 Hz

 series NR 8500
 Technical information / Instruction manual



| CET                                                  |  |  |
|------------------------------------------------------|--|--|
| 10.5 min/year                                        |  |  |
| tronics temperature                                  |  |  |
| -40 +85 °C (-40 +185 °F)                             |  |  |
| < 0.1 K                                              |  |  |
| ± 3 K                                                |  |  |
| es                                                   |  |  |
| Via the display and adjustment module                |  |  |
| Via the respective output signal                     |  |  |
|                                                      |  |  |
| 9.6 48 V DC, 20 42 V AC, 50/60 Hz                    |  |  |
| Integrated                                           |  |  |
| assive)                                              |  |  |
| (U <sub>B</sub> - U <sub>min</sub> )/0.022 A         |  |  |
| (24 V - 12 V)/0.022 A = 545 Ω                        |  |  |
| < 500 Ω                                              |  |  |
| 4 VA; 2.1 W                                          |  |  |
| al separating measures in the instrument             |  |  |
| Non-floating                                         |  |  |
| 500 V <sub>eff</sub>                                 |  |  |
| Between ground terminal and metallic process fitting |  |  |
|                                                      |  |  |
| IP66/67                                              |  |  |
| NEMA 4P                                              |  |  |
| Networks of overvoltage category III                 |  |  |
|                                                      |  |  |
| up to 2000 m (6562 ft)                               |  |  |
| up to 5000 m (16404 ft)                              |  |  |
|                                                      |  |  |

<sup>1)</sup> Galvanic separation between electronics and metal housing parts





# Technical data

Pollution degree (with fulfilled hous- 4 ing protection)

Protection rating (IEC 61010-1)

# **Radio astronomy stations**

Certain restrictions on the use of NivoRadar 8500 outside closed vessels result from the radio license. You can find these restrictions in the accompanying document "*Information sheet Radio licenses*". Some of these restrictions have to do radio astronomy stations. The following table states the geographic positions of radio astronomy stations in Europe:

| Country | Name of the Station | Geographic Latitude | Geographic Longitude |
|---------|---------------------|---------------------|----------------------|
| Finland | Metsähovi           | 60°13'04'' N        | 24°23'37'' E         |
| France  | Plateau de Bure     | 44°38'01'' N        | 05°54'26'' E         |
| Germany | Effelsberg          | 50°31'32'' N        | 06°53'00'' E         |
| Italy   | Sardinia            | 39°29'50" N         | 09°14'40" E          |
| Spain   | Yebes               | 40°31'27" N         | 03°05'22" W          |
|         | Pico Veleta         | 37°03'58" N         | 03°23'34" W          |
| Sweden  | Onsala              | 57°23'45" N         | 11°55'35" E          |

# Dimensions

The following dimensional drawings are only an extract of the possible versions.

# Housing

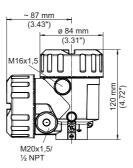



Fig. 4: NivoRadar 8500 with integrated display and adjustment module the housing is 9 mm (0.35 in) higher





# **Technical data**

### Thread with horn antenna 450 °C version

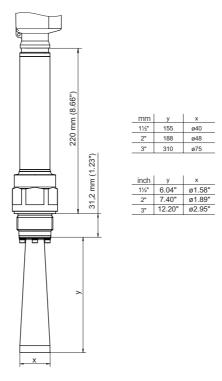



Fig. 5: NivoRadar 8500, thread with horn antenna 450 °C version





# Technical data

Flange with horn antenna 450 °C version

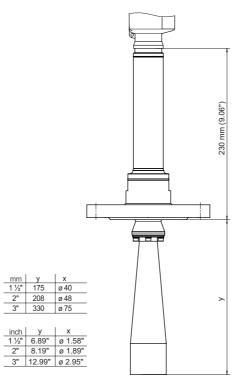



Fig. 6: NivoRadar 8500, flange with horn antenna 450 °C version



 
 Four-wire: 4 ... 20 mA/HART; 9.6 ... 48 V DC;

 20 ... 42 V AC; 50/60 Hz

 series NR 8500
 Technical information / Instruction manual



# Setup - the most important steps

#### Prepare

| What? | How?                                             |
|-------|--------------------------------------------------|
|       | Scan QR code on type label,<br>check sensor data |

#### Mount and connect sensor

| Liquids | Bulk solids |
|---------|-------------|
|         |             |

| Connection technology | Wiring plan |
|-----------------------|-------------|
|                       |             |

# Select adjustment

| Display and adjustment module | Adjustment app <sup>1)</sup> |
|-------------------------------|------------------------------|
| <b>S</b>                      |                              |

## Parameterize sensor

| Liquids                            | Bulk solids                       |
|------------------------------------|-----------------------------------|
| Enter medium type, application, ve | essel height, adjustment and mode |
|                                    |                                   |

#### **Check measured value**

| Indicators      | Output |
|-----------------|--------|
| 2.085<br>sensor |        |

<sup>1)</sup> Download via Apple App Store, Google Play Store, Baidu Store





Mounting

Protection against moisture

# **General instructions**

Protect your instrument against moisture ingress through the following measures:

- Use a suitable connection cable (see chapter "Connecting to power supply")
- Tighten the cable gland or plug connector
- Lead the connection cable downward in front of the cable entry or plug connector

This applies mainly to outdoor installations, in areas where high humidity is expected (e.g. through cleaning processes) and on cooled or heated vessels.



#### Note:

Make sure that during installation or maintenance no moisture or dirt can get inside the instrument.

To maintain the housing protection, make sure that the housing lid is closed during operation and locked, if necessary.

## Process conditions



#### Note:

For safety reasons, the instrument must only be operated within the permissible process conditions. You can find detailed information on the process conditions in chapter "*Technical data*" of the operating instructions or on the type label.

Hence make sure before mounting that all parts of the instrument exposed to the process are suitable for the existing process conditions.

These are mainly:

- Active measuring component
- Process fitting
- Process seal

Process conditions in particular are:

- Process pressure
- Process temperature
- Chemical properties of the medium
- Abrasion and mechanical influences

#### **Permissible process pressure (MWP) - Device** The permissible process pressure range is specified by "MWP" (Maximum Working Pressure) on the type label. The MWP takes the element of the measuring cell and processing fitting combination with the weakest pressure into consideration and may applied permanently. The specification refers to a reference temperature of +20 °C (+68 °F). It also applies when a measuring cell with a higher measuring range than the permissible pressure range of the process fitting is installed order-related.





# Mounting

In addition, a temperature derating of the process fitting, e. g. with flanges, can limit the permissible process pressure range according to the respective standard.

# Note:

In order to prevent damage to the device, a test pressure may only exceed the specified MWP briefly by 1.5 times at reference temperature. The pressure stage of the process fitting as well as the overload resistance of the measuring cell are taken into consideration here.

Permissible process pressure (MWP) -Mounting accessory The permissible process pressure range is stated on the type label. The instrument should only be operated with these pressures if the mounting accessory used also fulfils these values. This should be ensured by suitable flanges, welded sockets, tension rings with Clamp connections, sealings, etc.

**Second Line of Defense** As a standard feature, the NivoRadar 8500 is separate from the process through its plastic antenna encapsulation.

Optionally, the instrument is available with a Second Line of Defense (SLOD), a second process separation. It is located as gas-tight leadthrough between the process component and the electronics. This means additional safety against penetration of the medium fron the process into the instrument.

# **Housing features**

Filter element

The filter element in the housing is used for ventilation of the housing.

For effective ventilation, the filter element must always be free of deposits. Therefore, mount the device so that the filter element is protected against deposits.



#### Note:

Do not use a high-pressure cleaner to clean housings in standard types of protection. The filter element could be damaged and moisture could penetrate the housing.

For applications with high-pressure cleaners, the device is available with the appropriate IP69 housing protection.





# Mounting

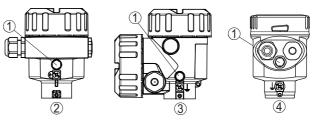



Fig. 7: Position of the filter element depending on housing

- 1 Filter element
- 2 Aluminium single chamber
- 3 Aluminium double chamber
- 4 Stainless steel single chamber (electropolished)

**Housing orientation** The housing of NivoRadar 8500 can be rotated completely by 360°. This enables optimal reading of the display and easy cable entry.

For housings made of electropolished stainless steel, this is done without tools.

With aluminium housings, a locking screw must be loosened for turning, see the following illustration:

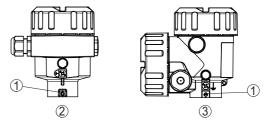



Fig. 8: Position of the locking screw depending on housing

- 1 Locking screw
- 2 Aluminium single chamber
- 3 Aluminium double chamber

Proceed as follows:

- 1. Loosen locking screw (hexagon size 2.5)
- 2. Turn housing into requested position
- 3. Re-tighten the locking screw (torque see chapter "*Technical data*").



#### Note:

By rotating the housing, polarisation changes. For this reason, please also observe the notes on polarisation in chapter "*Mounting instructions*".





## Mounting

**Cover catch** 

With the aluminium housing, the housing cover can be secured with a screw. This protects the device against unauthorised opening of the cover.

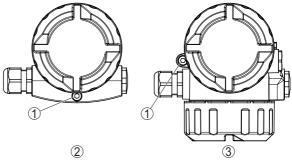



Fig. 9: Position of the safety screw depending on housing

- 1 Safety screw
- 2 Aluminium single chamber
- 3 Aluminium double chamber

Proceed as follows to secure the cover:

- 1. Screw the housing cover on tightly by hand
- 2. Unscrew the locking screw from the cover up to the stop using a size 4 hexagonal spanner
- 3. Check if the cover can no longer be turned

The housing cover is unlocked in the opposite way.

# Note:

The locking screw has two holes drilled through the head. Thus it can also be sealed.

# **Mounting instructions**

Radar sensors for level measurement emit electromagnetic waves. The polarisation is the direction of the electrical share of these waves. It is identifiable by a mark on the housing, see the following drawing:

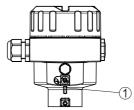



Fig. 10: Position of the polarisation

1 Nose for marking the direction of polarisation

# Polarisation





# Mounting

Turning the housing changes the polarisation and thus also the effect of false echoes on the measured value.

# Note:

Therefore, pay attention to the position of the polarisation when mounting or when making subsequent changes. Fix the housing to prevent a change in the metrological properties (see chapter "*Housing features*").

Mounting position liquids When mounting the device, keep a distance of at least 200 mm (7.874 in) from the vessel wall. If the device is installed in the center of dished or round vessel tops, multiple echoes can arise. However, these can be suppressed by an appropriate adjustment (see chapter "Setup").

# Note:

If you cannot maintain this distance, you should carry out a false signal suppression during setup. This applies especially if buildup on the vessel wall is to be expected.<sup>1)</sup>

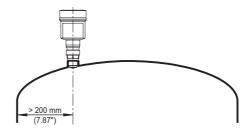



Fig. 11: Mounting of the radar sensor on round vessel tops

In vessels with conical bottom it can be advantageous to mount the device in the centre of the vessel, as measurement is then possible down to the bottom.

<sup>&</sup>lt;sup>1)</sup> In this case, it is recommended to repeat the false signal suppression at a later time with existing buildup.





Mounting

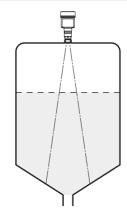



Fig. 12: Mounting of the radar sensor on vessels with conical bottom

**Reference** plane

The measuring range of the NivoRadar 8500 physically begins with the antenna end.

However, the min./max. adjustment begins mathematically with the reference plane.

For the horn antenna, the reference plane is the sealing surface on the hexagon or the lower side of the flange.




Fig. 13: Position of the reference plane

1 Reference plane

Inflowing medium liquids Do not mount the instrument in or above the filling stream. Make sure that you detect the medium surface, not the inflowing product.





Mounting

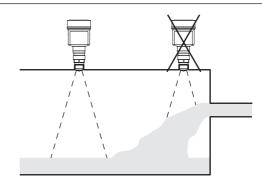



Fig. 14: Mounting of the radar sensor with inflowing medium

# Socket mounting - short nozzles

For nozzle mounting, the nozzle should be as short as possible and its end rounded. This reduces false reflections from the nozzle.

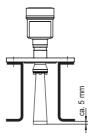



Fig. 15: Recommended socket mounting - horn antenna

Socket mounting longer nozzles If the reflective properties of the medium are good, you can mount NivoRadar 8500 on sockets longer than the antenna. The socket end should be smooth and burr-free, if possible also rounded.

# Note:

When mounting on a longer socket piece, we recommend to carry out a false signal suppression (see chapter "*Parameter adjustment*"). This adapts the device to the metrological properties of the socket.

You will find recommended values for socket heights in the following illustration or the table. The values come from typical applications. Deviating from the proposed dimensions, also longer sockets are possible, however the local conditions must be taken into account. NivoRadar<sup>®</sup>

Four-wire: 4 ... 20 mA/HART; 9.6 ... 48 V DC; 20 ... 42 V AC; 50/60 Hz Series NR 8500 Technical information / Instruction manual



# Mounting

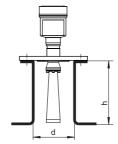



Fig. 16: Socket mounting with deviating socket dimensions - horn antenna  $% \left( {{{\rm{A}}_{{\rm{B}}}} \right)$ 

## Horn antenna

| Socket diameter "d" |       | Socket length "h" |           | Recommended anten-<br>na diameter |       |
|---------------------|-------|-------------------|-----------|-----------------------------------|-------|
| 40 mm               | 11/2" | ≤ 100 mm          | ≤ 3.9 in  | 40 mm                             | 11⁄2" |
| 50 mm               | 2"    | ≤ 150 mm          | ≤ 5.9 in  | 48 mm                             | 2"    |
| 80 mm               | 3"    | ≤ 300 mm          | ≤ 11.8 in | 75 mm                             | 3"    |

# Mounting in the vessel insulation

Instruments for a temperature range from 200 °C have a spacer for temperature decoupling. It is located between process fitting and electronics housing.



## Note:

Incorrect installation of the device can render this temperature decoupling ineffective. Damage to the electronics can be the result.

Hence ensure effective temperature decoupling. Include the spacer in the vessel insulation only up to max. 40 mm, see the following figure.

NivoRadar<sup>®</sup>

Four-wire: 4 ... 20 mA/HART; 9.6 ... 48 V DC; 20 ... 42 V AC; 50/60 Hz Series NR 8500 Technical information / Instruction manual



Mounting

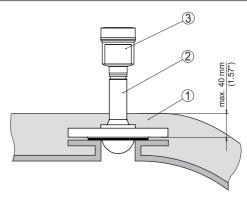



Fig. 17: Mounting the instrument on insulated vessels

- 1 Vessel insulation
- 2 Distance piece for temperature decoupling
- 3 Electronics housing

**Vessel installations** The mounting location of the radar sensor should be a place where no other equipment or fixtures cross the path of the radar signals.

Vessel installations, such as e.g. ladders, limit switches, heating spirals, struts, etc., can cause false echoes and impair the useful echo. Make sure when planning your measuring point that the radar sensor has a "*clear view*" to the measured product.

In case of existing vessel installations, a false signal suppression should be carried out during setup.

If large vessel installations such as struts or supports cause false echoes, these can be attenuated through supplementary measures. Small, inclined sheet metal baffles above the installations "scatter" the radar signals and prevent direct interfering reflections.



Fig. 18: Cover flat, large-area profiles with deflectors

#### Alignment - Liquids

In liquids, direct the device as perpendicular as possible to the medium surface to achieve optimum measurement results.





Mounting

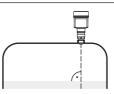



Fig. 19: Alignment in liquids

Agitators

Agitators in the vessel can reflect the measurement signal and thus lead to undesired incorrect measurements.



Note:

To avoid this, a false signal suppression should be carried out with the agitators in motion. This ensures that the interfering reflections from the agitators are saved with the blades in different positions.

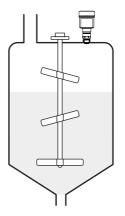



Fig. 20: Agitators

## Foam generation

Through the action of filling, stirring and other processes in the vessel, compact foams which considerably damp the emitted signals may form on the medium surface.



# Note:

If foams lead to measurement errors, you should use the biggest possible radar antennas or as an alternative, sensors with guided radar.

## **Measuring rigs - bypass**

Measurement in the bypass tube A bypass consists of a standpipe with lateral process fittings. It is attached to the outside of a container as a communicating vessel.





## Mounting

The NivoRadar 8500 in 80 GHz technology is suitable as standard for non-contact level measurement in such a bypass.

#### **Configuration bypass**

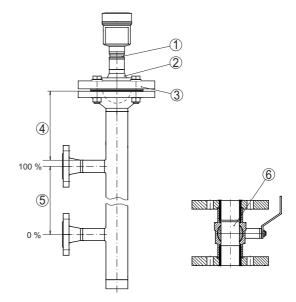



Fig. 21: Configuration bypass

- 1 Radar sensor
- 2 Polarisation marking
- 3 Instrument flange
- 4 Distance sensor reference plane to upper tube connection
- 5 Distance of the tube connections
- 6 Ball valve with complete opening

#### Instructions of orientation of the polarisation:

- Note marking of the polarisation on the sensor
- The marking must be in one plane with the tube connections to the vessel

#### Instructions for the measurement:

- The 100 % point may not be above the upper tube connection to the vessel
- The 0 % point may not be below the lower tube connection to the vessel
- Min. distance, sensor reference plane to upper edge of upper tube connection > 200 mm
- The antenna diameter of the sensor should correspond to the inner diameter of the tube

Instructions and requirements, bypass





# Mounting

- A false signal suppression with the installed sensor is recommended but not mandatory
- The measurement through a ball valve with unrestricted channel is possible
- The deviation can increase in the area of the connecting tube to the container ± 200 mm

#### Constructional requirements on the bypass pipe:

- Material metal, smooth inner surface
- In case of an extremely rough tube inner surface, use an inserted tube (tube in tube) or a radar sensor with tube antenna
- Flanges are welded to the tube according to the orientation of the polarisation
- Gap size with junctions ≤ 1 mm (for example, when using a ball valve or intermediate flanges with single pipe sections)
- Diameter should be constant over the complete length

#### **Measurement setup - Flow**

Mounting

In general, the following must be observed while mounting the device:

- Mounting the sensor on the upstream or inlet side
- Installation in the centre of the flume and vertical to the liquid surface
- Distance to the overfall orifice or Venturi flume
- Distance to the max. height of the orifice or flume for optimum accuracy: > 250 mm (9.843 in)<sup>1)</sup>
- Requirements from approvals for flow measurement, e.g. MCERTS

Flume

## Predefined curves:

A flow measurement with these standard curves is very easy to set up, as no dimensional information of the flume is required.

- Palmer-Bowlus flume ( $Q = k \times h^{1.86}$ )
- Venturi, trapezoidal weir, rectangular flume (Q = k x  $h^{1.5}$ )
- V-Notch, triangular overfall ( $Q = k \times h^{2.5}$ )

#### Channel with dimensions according to ISO standard:

When selecting these curves, the dimensions of the flume must be known and entered via the assistant. As a result, the accuracy of the flow measurement is higher than with the specified curves.

- Rectangular flume (ISO 4359)
- Trapezoidal flume (ISO 4359)
- <sup>1)</sup> The value given takes into account the block distance. At smaller distances, the measuring accuracy is reduced, see "Technical data".





Mounting

- U-shaped flume (ISO 4359)
- Triangular overfall thin-walled (ISO 1438)
- Rectangular flume thin-walled (ISO 1438)
- Rectangular weir broad crown (ISO 3846)

#### Flow formula:

If the flow formula of your flume is known, you should select this option, as the accuracy of the flow measurement is highest here.

• Flow formula: Q = k x h<sup>exp</sup>

# **Manufacturer definition:**

If you use a Parshall flume from the manufacturer ISCO, this option must be selected. This gives you a high accuracy of flow measurement with easy configuration.

Alternatively, you can also take over Q/h table values provided by the manufacturer here.

- ISCO-Parshall-Flume
- Q/h table (assignment of height with corresponding flow in a table)



## Tip:

Detailed project planning data can be found at the channel manufacturers and in the technical literature.

The following examples serve as an overview for flow measurement.

#### **Rectangular overfall**




Fig. 22: Flow measurement with rectangular flume:  $\mathbf{h}_{\rm max}$  = max. filling of the rectangular flume

- 1 Overfall orifice (side view)
- 2 Upstream water
- 3 Tailwater
- 4 Overfall orifice (view from tailwater)





# Mounting

# Khafagi-Venturi flume

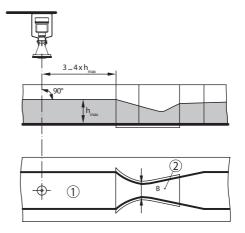



Fig. 23: Flow measurement with Khafagi-Venturi flume:  ${\rm h}_{\rm max.}$  = max. filling of the flume; B = tightest constriction in the flume

- 1 Position sensor
- 2 Venturi flume





# **Connecting to power supply**

# **Preparing the connection**

Safety instructions

Always keep in mind the following safety instructions:

- The electrical connection must only be carried out by trained, qualified personnel authorised by the plant operator.
- If overvoltage surges are expected, overvoltage arresters should be installed.

# Warning:

Only connect or disconnect in de-energized state.

| Voltage supply via low<br>voltage | In this case, the instrument is designed in protection class I.<br>Generally connect the instrument to vessel ground (potential<br>equalization) or with plastic vessels to the next ground po-<br>tential. For this purpose, a ground terminal is located laterally<br>on the instrument housing.                                                                                                                                                                                                                                                                                         |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Connection cable                  | An approved, three-wire installation cable with PE conductor<br>is required for voltage supply with mains voltage.<br>The 4 20 mA current output is connected with standard<br>two-wire cable without shielding. If electromagnetic interfer-<br>ence is expected which is above the test values of EN 61326-1<br>for industrial areas, shielded cable should be used.<br>Use cable with round cross section for instruments with<br>housing and cable gland. Use a cable gland suitable for the<br>cable diameter to ensure the seal effect of the cable gland<br>(IP protection rating). |
| Cable glands                      | <b>Metric threads</b><br>In the case of instrument housings with metric thread, the<br>cable glands are screwed in at the factory. They are sealed<br>with plastic plugs as transport protection.<br>You have to remove these plugs before electrical connection.                                                                                                                                                                                                                                                                                                                          |
|                                   | <b>NPT thread</b><br>In the case of instrument housings with self-sealing NPT<br>threads, it is not possible to have the cable entries screwed<br>in at the factory. The free openings for the cable glands are<br>therefore covered with red dust protection caps as transport<br>protection.                                                                                                                                                                                                                                                                                             |
|                                   | Prior to setup you have to replace these protective caps with approved cable glands or close the openings with suitable blind plugs.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                   | Max. torque for all housings, see chapter "Technical data".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cable screening and grounding     | If shielded cable is required, we recommend connecting the<br>cable screening on both ends to ground potential. In the sen-<br>sor, the cable screening is connected directly to the internal                                                                                                                                                                                                                                                                                                                                                                                              |





## **Connecting to power supply**

ground terminal. The ground terminal on the outside of the housing must be connected to the ground potential (low impedance).



In Ex systems, the grounding is carried out according to the installation regulations.

In electroplating plants as well as plants for cathodic corrosion protection it must be taken into account that significant potential differences exist. This can lead to unacceptably high currents in the cable screen if it is grounded at both ends.



#### Note:

The metallic parts of the instrument (process fitting, sensor, concentric tube, etc.) are connected with the internal and external ground terminal on the housing. This connection exists either directly via the conductive metallic parts or, in case of instruments with external electronics, via the screen of the special connection cable.

You can find specifications on the potential connections inside the instrument in chapter "Technical data".

## Connecting

The voltage supply and signal output are connected via the **Connection technology** spring-loaded terminals in the housing.

> Connection to the display and adjustment module or to the interface adapter is carried out via contact pins in the housing.

## Information: 1

The terminal block is pluggable and can be removed from the electronics. To do this, lift the terminal block with a small screwdriver and pull it out. When reinserting the terminal block, you should hear it snap in.

**Connection procedure** 

Proceed as follows:

- 1. Unscrew the housing lid
- 2. Loosen compression nut of the cable gland and remove blind plug
- 3. Remove approx. 10 cm (4 in) of the cable mantle (signal output), strip approx. 1 cm (0.4 in) insulation from the ends of the individual wires
- 4. Insert the cable into the sensor through the cable entry





## **Connecting to power supply**



Fig. 24: Connection steps 5 and 6

5. Insert the wire ends into the terminals according to the wiring plan

#### Information:

Solid cores as well as flexible cores with wire end sleeves are inserted directly into the terminal openings. In case of flexible cores without end sleeves, press the terminal from above with a small screwdriver, the terminal opening is then free. When the screwdriver is released, the terminal closes again.

- Check the hold of the wires in the terminals by lightly pulling on them
- 7. Connect the cable screening to the internal ground terminal, connect the outer ground terminal to potential equalisation in case of power supply via low voltage
- Connect the lead cable for voltage supply in the same way according to the wiring plan, in addition connect the ground conductor to the inner ground terminal when powered with mains voltage.
- 9. Tighten the compression nut of the cable entry gland. The seal ring must completely encircle the cable





## **Connecting to power supply**

10. Screw the housing lid back on

The electrical connection is finished.

#### Information:

The terminal blocks are pluggable and can be removed from the housing insert. To do this, lift the terminal block with a small screwdriver and pull it out. When inserting the terminal block again, you should hear it snap in.

## Wiring plan, double chamber housing



Т

The following illustrations apply to the non-Ex as well as to the Ex d version.

#### Electronics compartment

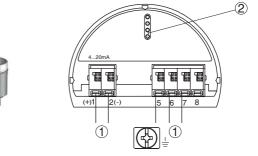



Fig. 25: Electronics compartment - double chamber housing

- 1 Internal connection to the connection compartment
- 2 For display and adjustment module or interface adapter

#### Information:

The connection of an external display and adjustment unit is not possible with the Ex d version.

Connection compartment with low voltage

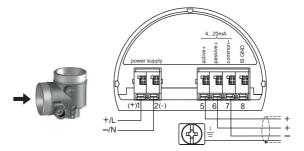



Fig. 26: Connection compartment with double chamber housing with low voltage





## **Connecting to power supply**

| Terminal | Function                                                                                       | Polarity |
|----------|------------------------------------------------------------------------------------------------|----------|
| 1        | Voltage supply                                                                                 | +/L      |
| 2        | Voltage supply                                                                                 | -/N      |
| 5        | 4 20 mA output (active)                                                                        | +        |
| 6        | 4 20 mA output (pas-<br>sive)                                                                  | +        |
| 7        | Mass - output                                                                                  | -        |
| 8        | Function ground when in-<br>stalling according to CSA<br>(Canadian Standards As-<br>sociation) |          |

## Switch-on phase

After connection of the device to power supply, the device first carries out a self-test:

- Internal check of the electronics
- Indication of the status message "F 105 Determine measured value" on the display or PC
- The output signal jumps briefly to the set fault current

Then the actual measured value is output to the signal cable. The value takes into account settings that have already been carried out, e.g. default setting.





## Access protection, IT security

## **Bluetooth radio interface**

|                                    | Bluetooth laulo interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    | Devices with a Bluetooth radio interface are protected<br>against unwanted access from outside. This means that only<br>authorized persons can receive measured and status values<br>and change device settings via this interface.                                                                                                                                                                                                                                                                                                |
| Bluetooth access code              | A Bluetooth access code is required to establish Bluetooth<br>communication via the adjustment tool (smartphone/tablet/<br>notebook). This code must be entered once when Bluetooth<br>communication is established for the first time in the adjust-<br>ment tool. It is then stored in the adjustment tool and does<br>not have to be entered again.<br>The Bluetooth access code is individual for each device. It is                                                                                                           |
|                                    | printed on the device housing with Bluetooth. In addition, it<br>is supplied with the device in the information sheet " <i>PINs and</i><br><i>Codes</i> " In addition, the Bluetooth access code can be read<br>out via the display and adjustment unit, depending on the<br>device version.                                                                                                                                                                                                                                       |
|                                    | The Bluetooth access code can be changed by the user after<br>the first connection is established. If the Bluetooth access<br>code is entered incorrectly, the new entry is only possible<br>after a waiting period has elapsed. The waiting time increases<br>with each further incorrect entry.                                                                                                                                                                                                                                  |
| Emergency Bluetooth<br>unlock code | The emergency Bluetooth access code enables Bluetooth<br>communication to be established in the event that the<br>Bluetooth access code is no longer known. It can't be<br>changed. The emergency Bluetooth access code can be found<br>in information sheet "Access protection". If this document is<br>lost, the emergency Bluetooth access code can be retrieved<br>from your personal contact person after legitimation. The<br>storage and transmission of Bluetooth access codes is always<br>encrypted (SHA 256 algorithm). |
|                                    | Protection of the parameterization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                    | The settings (parameters) of the device can be protected<br>against unwanted changes. The parameter protection is de-<br>activated on delivery, all settings can be made.                                                                                                                                                                                                                                                                                                                                                          |
| Device code                        | To protect the parameterization, the device can be locked<br>by the user with the aid of a freely selectable device code.<br>The settings (parameters) can then only be read out, but not<br>changed. The device code is also stored in the adjustment<br>tool. However, unlike the Bluetooth access code, it must be<br>re-entered for each unlock. When using the adjustment app<br>or DTM, the stored device code is then suggested to the user<br>for unlocking.                                                               |





## Access protection, IT security

| Emergency device code | The emergency device code allows unlocking the device in<br>case the device code is no longer known. It can't be changed.<br>The emergency device code can also be found on the sup-<br>plied information sheet "Access protection". If this document<br>is lost, the emergency device code can be retrieved from<br>your personal contact person after legitimation. The storage<br>and transmission of the device codes is always encrypted<br>(SHA 256 algorithm). |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | IT Security (IEC 62443-4-2)                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                       | <ul> <li>The device in version with IT security (IEC 62443-4-2) provides protection against the following threats:</li> <li>Data manipulation (violation of integrity)</li> <li>Denial of Service DoS (violation of availability)</li> </ul>                                                                                                                                                                                                                          |
|                       | <ul> <li>Spying (breach of confidentiality)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | For this purpose, the device has proven safety functions:                                                                                                                                                                                                                                                                                                                                                                                                             |
|                       | <ul> <li>User authentication</li> <li>Event memory (logging)</li> <li>Integrity check of the firmware</li> <li>Resource management</li> <li>Data backup for recovery</li> </ul>                                                                                                                                                                                                                                                                                       |
|                       | <b>Note:</b><br>Observe the requirements from the documents " <i>Cyber Secu-</i><br><i>rity according to IEC 62443-4-2</i> " as well as the " <i>Component</i><br><i>Requirements</i> " for the NivoRadar 8500. They must be fulfilled<br>in order for the staggered security strategy of the device to<br>take effect as intended. You can find the documents on our<br>homepage.                                                                                    |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |





## Set up with the display and adjustment module

## Insert display and adjustment module

The display and adjustment module can be inserted into the sensor and removed again at any time. You can choose any one of four different positions - each displaced by 90°. It is not necessary to interrupt the power supply.

Proceed as follows:

- 1. Unscrew the housing lid
- 2. Place the display and adjustment module on the electronics in the desired position and turn it to the right until it snaps in.
- 3. Screw housing lid with inspection window tightly back on

Disassembly is carried out in reverse order.

The display and adjustment module is powered by the sensor, an additional connection is not necessary.



Fig. 27: Installing the display and adjustment module in the double chamber housing



If you intend to retrofit the instrument with a display and adjustment module for continuous measured value indication, a higher lid with an inspection glass is required.





## Set up with the display and adjustment module

## Adjustment system

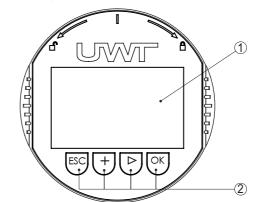



Fig. 28: Display and adjustment elements

- 1 LC display
- 2 Adjustment keys

**Key functions** 

- **[OK]** key:
  - Move to the menu overview
  - Confirm selected menu
  - Edit parameter
  - Save value
- **[->]** key:
  - Change measured value presentation
  - Select list entry
  - Select menu items
  - Select editing position
- [+] key:
  - Change value of the parameter
- **[ESC]** key:
  - Interrupt input
  - Jump to next higher menu

| Adjustment system | The instrument is operated via the four keys of the display |
|-------------------|-------------------------------------------------------------|
|                   | and adjustment module. The individual menu items are        |
|                   | shown on the LC display. You can find the function of the   |
|                   | individual keys in the previous illustration.               |
|                   |                                                             |

Adjustment system keys via magnetic pen With the Bluetooth version of the display and adjustment module you can also adjust the instrument with the magnetic pen. The pen operates the four keys of the display and adjustment module right through the closed lid (with inspection window) of the sensor housing.





## Set up with the display and adjustment module

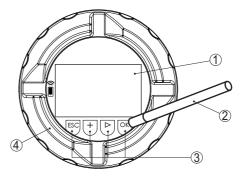



Fig. 29: Display and adjustment elements - with adjustment via magnetic pen

- 1 LC display
- Magnetic pen
   Adjustment keys
- 4 Lid with inspection window

When the [+] and [->] keys are pressed guickly, the edited **Time functions** value, or the cursor, changes one value or position at a time. If the key is pressed longer than 1 s, the value or position changes continuously.

> When the **[OK]** and **[ESC]** keys are pressed simultaneously for more than 5 s, the display returns to the main menu. The menu language is then switched over to "English".

Approx. 60 minutes after the last pressing of a key, an automatic reset to measured value indication is triggered. Any values not confirmed with **[OK]** will not be saved.

## Measured value indication - Selection of national language

Measured value indication

With the [->] key you move between three different indication modes:



With the "OK" key you move to the menu overview.

## Note:

During the first setup, you move with the "**OK**" key to the selection menu "Menu language".

Menu language

In this menu item, you can select the menu language for further parameterization.





## Set up with the display and adjustment module

| Sprache des l       | Menüs |
|---------------------|-------|
| √ <u>Deutsch</u>    |       |
| English<br>Francais |       |
| Español             |       |
| Português           |       |
|                     |       |



#### Information:

A later change of the selection is possible via the menu item "Setup, display, menu language".

With the "**OK**" key you move to the menu overview.

## Parameter adjustment

#### Lock/Unlock adjustment

Lock/Unlock adjustment (non-SIL)



#### • Information: The non-SIL

The non-SIL version of the device is delivered without activated access protection. If necessary, the access protection can be activated and the device locked.



When the adjustment is blocked, only the following adjustment functions are possible without entering the device code:

- Select menu items and show data
- Read data from the sensor into the display and adjustment module



#### **Caution:**

When the adjustment is blocked, the adjustment via other systems is also blocked.

Releasing the sensor adjustment is also possible in any menu item by entering the device code.

Lock/Unlock adjustment (SIL)

In this menu item you safeguard the sensor parameters against unauthorized or unintentional modifications.

#### Information:

The SIL version of the device is delivered in locket state.





## Set up with the display and adjustment module

#### Safe parameterization:

To avoid possible errors during parameterization in a nonsafe user environment, a verification procedure is used that makes it possible to detect parameterization errors reliably. For this, safety-relevant parameters must be verified before they are stored in the device. In normal operating condition, the instrument is also locked against parameter changes through unauthorized access.



#### Information:

1

If the device code has been changed and forgotten, the enclosed information sheet "Access Protection" provides an emergency device code.

### Character string comparison and serial number:

You first have to carry out the character string comparison. This is used to check the character respresentation.

Confirm if the two character strings are identical. The verification texts are provided in German and in the case of all other menu languages, in English.

Afterwards you confirm that the serial number of your instrument was carried over correctly. This is used to check device communication.





In the next step, the instrument checks the data of the measurement and decides by means of the evaluation results if a functions test is required. If a function test is necessary, the following message is displayed.

| SIL parameters | Non-SIL parameters |
|----------------|--------------------|
| 1/1            | 1/1                |
| Parameter OK?  | Parameter OK?      |

In this case, you have to carry out a function test.





#### Set up with the display and adjustment module

#### **Function test:**

During a function test, you have to test the safety function of the instrument in the vessel with the original medium.



You can find the detailed sequence of the function test in chapter "*Functional safety (SIL)*" of the operating instructions.

#### Verify parameter:

All safety-relevant parameters must be verified after a change. After the function test, all modified, safety-relevant parameters will be listed. Confirm the modified values one after the other.



If the described process of parameter adjustment was run through completely and correctly, the instrument will be locked and hence ready for operation.

| edienung         |
|------------------|
| Gesperrt         |
| Jetzt freigeben? |
|                  |

Otherwise the instrument remains in the released and hence unsafe condition.



#### Note:

When the adjustment is blocked, the adjustment via other systems is also blocked.

#### Setup

Measurement loop name

Here you can assign a suitable measurement loop name.

You can enter names with max. 19 characters. The character set comprises:

- Capital letters from A ... Z
- Numbers from 0 ... 9
- Special characters + / \_ blanks

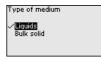


#### **Distance unit**

In this menu item you select the distance unit of the device.






## Set up with the display and adjustment module



**Type of medium** This menu item allows you to adapt the sensor to the different measuring conditions of the media "*Liquid*" or "*Bulk solid*".

The corresponding application is selected in the following menu item "*Application*".





**Application - liquid** With "*Liquid*", the applications are based on the following features, to which the measuring characteristic of the sensor is adjusted in particular:

Setup Distance unit Type of medium Application Vessel height Distance A (max. value)

Application ✓ <mark>Storage tank</mark> Stiffred vessel Dosing vessel Stilling tube Vessel/Collecting basin Application Plastic tank Mobile plastic tank (BC) Gauge measurement Flow flume Pumping station

| Application    | Vessel                                                                                                 | Process/measurement conditions                                                                                                                                                                                      | Further recom-<br>mendations                           |
|----------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Storage tank   | Large volume<br>Upright cylindrical,<br>horizontal round                                               | Slow filling and emptying<br>Smooth medium surface<br>Multiple reflections from dished ves-<br>sel ceiling<br>Condensation                                                                                          | -                                                      |
| Stirrer vessel | Large agitator<br>blades of metal<br>Installations like<br>flow breakers,<br>heating spirals<br>Nozzle | Frequent, fast to slow filling and emp-<br>tying<br>Strongly agitated surface, foam and<br>strong vortex generation<br>Multiple reflections through dished<br>vessel ceiling<br>Condensation, buildup on the sensor | False signal sup-<br>pression with<br>running agitator |
| Dosing vessel  | Small vessels                                                                                          | Frequent and fast filling/emptying<br>Tight installation situation<br>Multiple reflections through dished<br>vessel ceiling<br>Product buildup, condensate and foam<br>generation                                   | -                                                      |





## Set up with the display and adjustment module

| Application                                                  | Vessel                                                               | Process/measurement conditions                                                                                                                                                                                | Further recom-<br>mendations                                                                                                                                                            |
|--------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Standpipe                                                    | Standpipe in the<br>vessel                                           | Tubes with different diameters and<br>openings for product mixing<br>Welded connections or mechanical<br>joints with very long tubes                                                                          | Orientation of the<br>polarisation di-<br>rection<br>False signal sup-<br>pression                                                                                                      |
| Bypass                                                       | Bypass tube out-<br>side the vessel<br>Typical lengths: up<br>to 6 m | Tubes with different diameters<br>Lateral connections to the vessel                                                                                                                                           | Orientation of the<br>polarisation di-<br>rection<br>False signal sup-<br>pression                                                                                                      |
| Vessel/Collecting<br>basin<br>?                              | Large volume<br>Upright cylindrical<br>or rectangular                | Slow filling and emptying<br>Smooth medium surface<br>Condensation                                                                                                                                            | -                                                                                                                                                                                       |
| Plastic tank<br>(measurement<br>through the ves-<br>sel top) |                                                                      | Measurement through the tank top, if<br>appropriate to the application<br>Condensation on the plastic ceiling<br>In outdoor facilities, water and snow<br>on vessel top possible                              | When measuring<br>through the tank<br>top: False signal<br>suppression<br>When measuring<br>through the tank<br>top (outdoor are-<br>as): Protective roof<br>for the measuring<br>point |
| Transportable<br>plastic tank (IBC)                          | Small vessels                                                        | Material and thickness different<br>Measurement through the vessel top, if<br>appropriate to the application<br>Changed reflection conditions as well<br>as jumps in measured values when<br>changing vessels | When measuring<br>through the tank<br>top: False signal<br>suppression<br>When measuring<br>through the tank<br>top (outdoor are-<br>as): Protective roof<br>for the measuring<br>point |
| Gauge measure-<br>ment, waters                               |                                                                      | Slow gauge change<br>Extreme damping of output signal in<br>case of wave generation<br>Ice and condensation on the anten-<br>na possible<br>Floating debris sporadically on the wa-<br>ter surface            | -                                                                                                                                                                                       |





## Set up with the display and adjustment module

| Application             | Vessel                                | Process/measurement conditions                                                                   | Further recom-<br>mendations |
|-------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------|
| Flow measure-           |                                       | Slow gauge change                                                                                | -                            |
| ment flume/<br>Overfall |                                       | Smooth to agitated water surface                                                                 |                              |
|                         |                                       | Measurement often from a short dis-<br>tance with the demand for accurate<br>measurement results |                              |
|                         |                                       | Ice and condensation on the anten-<br>na possible                                                |                              |
| Pumping station/        |                                       | Partly strongly agitated surface                                                                 | False signal sup-            |
| Pump shaft              |                                       | Installations such as pumps and lad-<br>ders                                                     | pression                     |
|                         |                                       | Multiple reflections through flat ves-<br>sel ceiling                                            |                              |
|                         |                                       | Dirt and grease deposits on shaft wall and sensor                                                |                              |
|                         |                                       | Condensation on the sensor                                                                       |                              |
| Overflow basin          | Large volume                          | Partly strongly agitated surface                                                                 | -                            |
| (RÜB)                   | Partly installed<br>underground       | Multiple reflections through flat ves-<br>sel ceiling                                            |                              |
|                         |                                       | Condensation, dirt deposits on the sensor                                                        |                              |
|                         |                                       | Flooding of the sensor antenna                                                                   |                              |
| Demonstration           | Applications for                      | Instrument demonstration                                                                         | -                            |
| L3                      | non-typical lev-                      | Object recognition/monitoring                                                                    |                              |
| <u>0</u><br>            | el measurements,<br>e.g. device tests | Fast position changes of a measuring plate during functional test                                |                              |

## Application - bulk solid

With "*Bulk solid*", the applications are based on the following features, to which the measuring characteristic of the sensor is adjusted in particular:

| Setup<br>Distance unit<br>Type of medium<br>Application<br>Vessel height<br>Distance A (max. value) | Anwendung<br> |
|-----------------------------------------------------------------------------------------------------|---------------|
|-----------------------------------------------------------------------------------------------------|---------------|

Anwendung /<mark>Silo (Schlank und hoch)</mark> Bunker (großvolumig) Brecher Halde Demonstration





## Set up with the display and adjustment module

| Application   | Vessel                                                                             | Process/measurement conditions                                                                                                                                                                                                                                                                                                                                                       | Further recom-<br>mendations                                                           |
|---------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Silo          | Slim and high<br>Upright cylindrical                                               | Interfering reflections due to weld<br>seams on the vessel<br>Multiple echoes/diffuse reflections due<br>to unfavourable pouring positions with<br>fine grain<br>Varying pouring positions due to outlet<br>funnel and filling cone                                                                                                                                                  | False signal sup-<br>pression<br>Alignment of the<br>measurement to<br>the silo outlet |
| Bunker        | Large volume                                                                       | Large distance to the medium<br>Steep angles of repose, unfavourable<br>pouring positions due to outlet funnel<br>and filling cone<br>Diffuse reflections due to structured<br>vessel walls or internals<br>Multiple echoes/diffuse reflections due<br>to unfavourable pouring positions with<br>fine grain<br>Changing signal conditions when large<br>amounts of material slip off | False signal sup-<br>pression                                                          |
| Crusher       |                                                                                    | Measured value jumps and varying<br>pouring positions, e.g. due to truck fill-<br>ing<br>Fast reaction time<br>Large distance to the medium<br>Interfering reflections from fixtures or<br>protective devices                                                                                                                                                                        | False signal sup-<br>pression                                                          |
| Heap          | Large volume<br>Upright cylindrical<br>or rectangular                              | Measured value jumps, e.g. through<br>heap profile and traverses<br>Large angles of repose, varying pour-<br>ing positions<br>Measurement near the filling stream<br>Sensor mounting on movable convey-<br>or belts                                                                                                                                                                  | -                                                                                      |
| Demonstration | Applications that<br>are not typical lev-<br>el measurements,<br>e.g. device tests | Instrument demonstration<br>Object recognition/monitoring<br>Measured value verification with high-<br>er measuring accuracy with reflection<br>without bulk solids, e.g. via a measur-<br>ing plate                                                                                                                                                                                 | -                                                                                      |

## **Vessel height**

Through this selection the operating range of the sensor is adapted to the vessel height. Hence the measurement reliability is increased considerably under different basic conditions.





## Set up with the display and adjustment module





#### Note:

Regardless of this, the min. adjustment must also be carried out (see following section).

#### Adjustment

Since the radar sensor is a distance measuring instrument, it is the distance from the sensor to the medium surface that is measured. To indicate the actual level, the measured distance must be assigned to a certain height percentage (min./ max. adjustment).

During adjustment, enter the respective measuring distance when the vessel is full and empty (see the following examples):

#### Liquids:

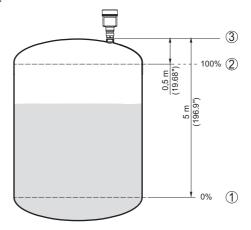



Fig. 30: Parameterisation example min./max. adjustment - liquids

- 1 Min. level = max. meas. distance (distance B)
- 2 Max. level = min. meas. distance (distance A)
- 3 Reference plane





Set up with the display and adjustment module



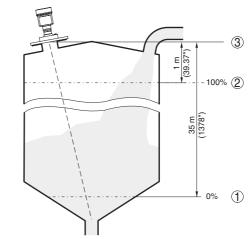



Fig. 31: Parameterisation example min./max. adjustment - bulk solids

- 1 Min. level = max. meas. distance (distance B)
- 2 Max. level = min. meas. distance (distance A)
- 3 Reference plane

If these values are not known, and adjustment can for example be carried out with the distances of 10 % and 90 %.

The starting point for these distance specifications is always the reference plane, e.g. the sealing surface of the thread or flange. Information on the reference plane can be found in the chapters "*Mounting instructions*" resp. "*Technical data*". The actual filling height is then calculated on the basis of these entries.

The actual product level during this adjustment is not important, because the min./max. adjustment is always carried out without changing the product level. These settings can be made ahead of time without the instrument having to be installed.

#### Distance A (max. value)

Proceed as follows:

 Select with [->] the menu item Distance A (max. value) and confirm with [OK].



2. Edit the distance value with **[OK]** and set the cursor to the requested position with **[->]**.





## Set up with the display and adjustment module

 Adjust the requested distance value for 100 % with [+] and store with [OK].



4. Move with **[ESC]** and **[->]** to the min. adjustment

#### Distance B (min. value)

Proceed as follows:

 Select with [->] the menu item "Distance B (min. value)" and confirm with [OK].



- 2. Edit the distance value with **[OK]** and set the cursor to the requested position with **[->]**.
- 3. Set the requested distance value for 0 % (e.g. distance from the sensor up to the vessel bottom) with **[+]** and save with **[OK]**. The cursor now jumps to the distance value.



#### **Access protection**

**Bluetooth access code** This menu item enables to change the factory-preset Bluetooth access code to your personal Bluetooth access code.





Bluetooth access code

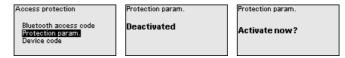
999999

## Note:

You can find the individual factory Bluetooth access code of the device on the information sheet supplied "*PINs and Codes*".

Protection of the parameterization

This menu item allows you to protect the sensor parameters from unwanted or unintended changes. To activate the protection, you must define and enter a 6-digit device code.






## Set up with the display and adjustment module

| No | te: |
|----|-----|
|    |     |

For SIL devices, the protection of the parameterisation is activated ex works. These devices have an individual device code. You will find it in the information sheet supplied "*PINs and Codes*".



When protection is activated, the individual menu items can still be selected and displayed. However, the parameters can no longer be changed.

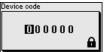
Releasing the sensor adjustment is also possible in any menu item by entering the device code.



## Note:

When the parameter adjustment is protected, the adjustment via other systems is also blocked.

This menu item allows you to change the device code. It is


only displayed if the parameterisation protection has been

Device code



activated beforehand.

Device code Change device code OK?





## Note:

The changed device code is also effective for operation via other systems.

#### Reset

During a reset, parameter settings made by the user are reset to the values of the factory settings. You can fined the values in chapter "*Menu overview*".

| Setup<br>Access protection<br>Reset<br>Extended settings | Reset<br>Reset to default<br>Restart | Reset to default<br>Do you really want to<br>carry out the reset? |
|----------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------|
| Diagnostics<br>v                                         |                                      |                                                                   |



## Information:

The language and Bluetooth access code are not reset, a currently running simulation however is aborted.

### **Reset - Factory settings:**

• Restoring the factory and order-specific parameter settings

Reset





## Set up with the display and adjustment module

- Resetting a user-set measuring range to the recommended measuring range (see chapter "*Technical data*")
- Deleting a created false signal suppression, a user-programmable linearisation curve as well as the measured value and echo curve memory<sup>1)</sup>

#### **Reset - Restart:**

Is used to restart the device without switching off the operating voltage.



#### Note:

For the duration of the reset, the device changes its behaviour from the normal measuring operation. Therefore, observe the following for downstream systems:

- The current output outputs the set false signal
- The Asset-Management function outputs the message "Maintenance" aus

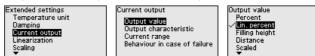
#### Extended settings

**Temperature unit** In this menu item you select the temperature unit of the device.

Access protection Extended Reset Damping Extended settings Current Diagnostics Scaling






#### Damping

To damp process-dependent measured value fluctuations, set an integration time of 0 ... 999 s in this menu item.



## Current output - Output value

In this menu item you determine which measured value is output via the respective current output:



The following selection possibilities are available:

- Percent
- Linearized percent
- Filling height
- Distance
- Scaled
- Measurement reliability

<sup>1)</sup> The event and parameter change memories are maintained.



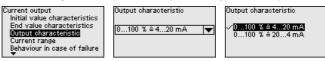


## Set up with the display and adjustment module

- Electronics temperature
- Measuring rate
- Operating voltage

Current output - Initial/ Final value characteristics Here you determine which heights of the output value belong to the current values 4 mA and 20 mA .



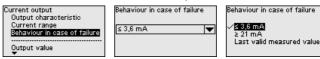

#### Note:

This menu item is only available if one of the following output values was selected for the current output:

- Measurement reliability
- Electronics temperature
- Measuring rate
- Operating voltage

Current output - Output characteristics

In the menu item "*Current output - Output characteristic*" you select for 0 ... 100 % output value if the characteristic of the current output rises (4 ... 20 mA) or falls (20 ... 4 mA).




Current output - Current In the deter

In the menu item "*Current output - Current range*" you determine the range of the current output as 4 ... 20 mA or 3.8 ... 20.5 mA.



Current output - Reaction in case of fault In the menu item "Current output - Behaviour in case of failure" you set the behaviour of the current output in case of failures as  $\leq 3.6$  mA or  $\geq 21$  mA resp. the last measured value.







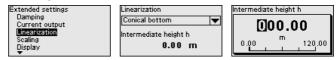
## Set up with the display and adjustment module

#### Linearisation

Linearisation is required for all vessels where the vessel volume does not increase linearly with the level and the display or output of the volume is desired. The same applies to flow measuring constructions and the relationship between flow and level.

Corresponding linearisation curves are stored for these measurement situations. They indicate the relationship between the percentage level and the vessel volume or flow rate. The selection depends on the selected linerarisation type liquid or bulk solid.




## Note:

The selected linearisation applies to the measured value indication and the signal output.

Depending on the medium and the vessel bottom, the intermediate height is also entered, see next menu item.

#### Linearization - Intermediate height

The intermediate height is the beginning of the cylindrical area, e.g. for vessels with conical bottoms.



#### Scaling

In the menu item "Scaling" you define the scaling variable and unit as well as the scaling format. By doing so, it is for example the indication of the level measured value for 0 % and 100 % on the display as volume in l is possible.



| Scaling variable |   |
|------------------|---|
| Volume           | • |
| Scaling unit     |   |
| I                | • |

#### Display - Menu language

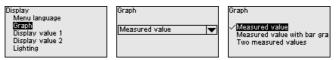
This menu item enables the setting of the requested national language.



The following languages are available:

- German
- English
- French

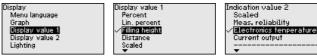





## Set up with the display and adjustment module

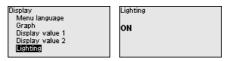
- Spanish
- Portuguese
- Italian
- Dutch
- Russian
- Chinese
- Japanese
- Polish
- Czech
- Turkish

## **Display - Presentation** With the *[->]* key you move between three different indication modes:


- tion modes.
  - Measured value in large font
  - Measured value and corresponding bargraph presentation
  - Measured value as well as second selectable value, e.g. electronics temperature



During the initial setup of an instrument shipped with factory settings, use the "**OK**" key to get to the menu "*National language*".


### Display - Displayed value 1, 2

In this menu item, you determine which measured values is displayed.



## Display - Lighting

The display and adjustment module has a backlight for the display. In this menu item you can switch the lighting on or off. You can find the required operating voltage in chapter "*Technical data*".





#### Note:

If the power supply is currently insufficient, the lighting is temporarily switched off (maintaining the device function).

False signal suppression

The following circumstances cause interfering reflections and can influence the measurement:





## Set up with the display and adjustment module

- High mounting nozzles
  - Vessel internals such as struts
  - Agitators
  - Buildup or welded joints on vessel walls

A false signal suppression detects, marks and saves these false signals to ensure that they are ignored in the level measurement.

## Note:

The false signal suppression should be done with the lowest possible level so that all potential interfering reflections can be detected.

#### **Create new:**

Proceed as follows:

 Select with [->] the menu item "False signal suppression" and confirm with [OK].



- 2. Confirm 2-times with **[OK]** and enter the actual distance from the sensor to the product surface.
- All interfering signals in this range are detected by the sensor and stored after being confirmed with [OK].

### • Note: Check

Check the distance to the medium surface, because if an incorrect (too large) value is entered, the existing level will be saved as a false signal. The level would then no longer be detectable in this area.

If a false signal suppression has already been saved in the sensor, the following menu window appears when selecting *"False signal suppression"*:



#### Delete all:

An false signal suppression that has already been created is completely deleted.

 $\rightarrow$  This is useful if the applied false signal suppression no longer matches the metrological conditions of the vessel.

## Extend:

A false signal suppression that has already been created is extended. The distance to the medium surface of the created



Date/Time

Four-wire: 4 ... 20 mA/HART; 9.6 ... 48 V DC; 20 ... 42 V AC; 50/60 Hz Series NR 8500 Technical information / Instruction manual



## Set up with the display and adjustment module

false signal suppression is displayed. This value can now be changed and the false signal suppression can be extended to this area.

 $\rightarrow$  This is useful if a false signal suppression was carried out when the level was too high and thus not all false signals could be detected.

In this menu item, the internal clock of the sensor is set to the desired time.





Note:

The device is set to CET (Central European Time) at the factory.

# **HART mode** In this menu item you specify the HART mode and enter the address for multidrop mode.

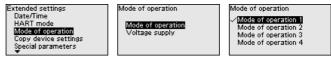
#### HART address 0:

In the menu item "Output mode" the "Analogue current output" is displayed and a 4 ... 20 mA signal output.

#### HART address deviation from 0:

In the menu item "Output mode" "Fixed current (4 mA)" is displayed and independent of the actual level a fixed 4 mA signal output. The level is output digitally via the HART signal.

In the mode "*Fixed current*" up to 63 sensors can be operated on one two-wire cable (Multidrop operation). An address between 0 and 63 must be assigned to each sensor.




#### Mode

This menu item contains operational settings of the sensor.

#### Mode:

Country or region-specific settings for the radar signals are determined via the operating mode.



• Mode 1: EU, Albania, Andorra, Azerbaijan, Australia, Belarus, Bosnia and Herzegovina, Canada, Liechtenstein, Moldavia,





## Set up with the display and adjustment module

Monaco, Montenegro, New Zealand, Northern Macedonia, Norway, San Marino, Saudi Arabia, Serbia, South-Africa, Switzerland, Turkey, Ukraine, United Kingdom, USA

- Mode of operation 2: Brazil, Japan, South Korea, Taiwan, Thailand
- Mode of operation 3: India, Malaysia
- Mode of operation 4: Russia, Kazakhstan

#### Note:

Depending on the operating mode, metrological properties of the device can change (see chapter "Technical data, input variable").

#### Voltage supply:

The power supply determines whether the sensor is in operation permanently or only in accordance with certain requirements.



Copy instrument settings

The following functions are available:



Copy device settings?

Copy instr. settings

```
Copy from sensor
Copy to sensor
```

#### Load from sensor:

Store data from sensor in the display and adjustment module

#### Write to sensor:

Store data from display and adjustment module in the sensor

The following device settings are copied:

- Measurement loop name
- Application
- Units
- Adjustment
- Damping
- Current output
- Linearisation
- Scaling
- Indication
- PV adjustment
- Mode
- Diagnostic behaviour

The copied data are permanently saved in an EEPROM memory in the display and adjustment module and remain there





## Set up with the display and adjustment module

even in case of power failure. From there, they can be written into one or more sensors or kept as backup for a possible electronics exchange.

#### Note:

Before the data are saved in the sensor, a safety check is carried out to determine if the data match the sensor. In the process the sensor type of the source data as well as the target sensor are displayed. If the data do not match, a fault message is outputted or the function is blocked. The data are saved only after release.

Special parameters are used to adapt the sensor to special **Special parameters** requirements. However, this is only necessary in rare cases.

> However, only change the special parameters after consulting our service staff.



The special parameters can be reset to factory settings with "Reset".

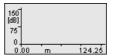


## Note:

The special parameters are described in a separate section at the end of the chapter "Parameter adjustment".

#### Diagnostics

The following is displayed in this menu item:


- Diagnosis status (device status OK or error messages)
- Change counter (number of the parameter changes)
- Current checksum CRC (checksum for plausibility of the set parameters) with date of the last change
- Checksum (CRC) of the last SIL locking with date



#### Echo curve

The "Echo curve" shows the signal strength of the echoes over the measuring range in dB. This enables an evaluation of the quality of the measurement.





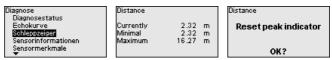


**Diagnosis status** 





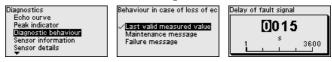
## Set up with the display and adjustment module


The selected curve is continuously updated. A submenu with zoom functions is opened with the **[OK]** key:

- "X-Zoom": Zoom function for the meas. distance
- "Y-Zoom": 1, 2, 5 and 10x signal magnification in "dB"
- "Unzoom": Reset the presentation to the nominal measuring range without magnification

**Measured values/peak** The following min./max. values saved by the sensor are displayed in the menu item "*Measured values/Peak indicator*":

- Distance
- Measurement reliability
- Measuring rate
- Electronics temperature
- Operating voltage


The **[OK]** key opens a reset function in the respective peak indicator window:



With the **[OK]** key, the peak indicator are reset to the actual measured values.

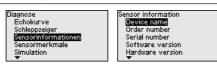
## Diagnostic behaviour

In this menu item, you define what the signal output outputs in the event of an echo loss. For this purpose, the time after an echo loss until a fault message is selected.



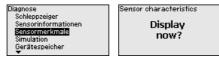
Sensor information In this menu item the following information of the instrument can be read out:

- Device name
- Order and serial number
- Hardware and software version
- Device Revision
- Factory calibration date


as well as additionally depending on the device version:

- Instrument address
- Loop Current Mode
- Fieldbus Profile Rev.
- Expanded Device Type
- Sensor acc. to SIL
- Sensor acc. to WHG
- Bustype ID






## Set up with the display and adjustment module




#### Sensor characteristics

The menu item "Sensor characteristics" delivers sensor characteristics such as approval, process fitting, seal, measuring range etc.



#### Simulation

In this menu item you can simulate measured values via the current output. This allows the signal path to be tested, e.g. through downstream indicating instruments or the input card of the control system.



Select the requested simulation variable and set the requested value.



#### **Caution:**

During simulation, the simulated value is output as 4 ... 20 mA current value and as digital HART signal. The status message within the context of the asset management function is "*Maintenance*".



#### Note:

The sensor terminates the simulation automatically after 60 minutes.

To deactivate the simulation manually in advance, you have to push the **[ESC]** key and confirm the message with the **[OK]** key.

| imulation             |
|-----------------------|
| Deactivate simulation |
| OK?                   |
| UKY                   |

#### **Device memory**

The menu item Device memory offers the following functions:

| Diagnose       | Device memory           | Echo curve of the setup |
|----------------|-------------------------|-------------------------|
| Sensormerkmale |                         |                         |
| Simulation     |                         | Store echo curve        |
| Gerätespeicher | Echo curve of the setup | Store echo curve        |
| Geratespeicher | Echo curve memory       |                         |
|                |                         |                         |
| Diagnosestatus |                         | OK?                     |
| •              |                         | VIII                    |





## Set up with the display and adjustment module

#### Echo curve of the setup:

With the function "*Echo curve of the setup*" it is possible to store the echo curve at the time of the setup. Storage should be carried out at the lowest possible level.



This is generally recommended, even mandatory, for using the asset management functionality.

#### Echo curve memory:

The function "Echo curve memory" allows up to ten individual echo curves to be stored, for example to detect the measurement behaviour of the sensor in different operating conditions.

With the adjustment software PACTware and the PC, the stored echo curves can be displayed with high resolution and used to recognize signal changes over time. In addition, the echo curve saved during setup can also be displayed in the echo curve window and compared with the current echo curve.

### **Special parameters**

Measuring range start limiting is activated here. The appropriate distance value is set in the special parameter SP02.

 $\rightarrow$  Jumps in the measured value to a changing false signal in the close range can thus be prevented.



#### Note:

However, activation also means that the sensor no longer accepts the level echo in the event of overfilling above the measuring range begin. A measured value jump to a multiple echo may occur here.

| SP02 - Manual limitation<br>of the measuring range<br>begin             | Here, an individual limitation of the measuring range be-<br>gin takes place independent of the 100 % adjustment. The<br>entered distance value in " $m$ " must always be between the<br>sensor reference point and the maximum level.<br>$\rightarrow$ Echoes between the sensor reference point and this value<br>will not be detected. |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SP03 - Reliability on the<br>vessel bottom resp. the<br>measuring range | This is an additional distance value " <i>m</i> " that is added to the special parameter SP24 to reliably detect the zero point in case of insufficient reflections at the bottom of the vessel.                                                                                                                                          |
|                                                                         | $\rightarrow$ The echo detection below the 0 % adjustment is intended to support the reliable detection of an echo when the vessel is completely empty.                                                                                                                                                                                   |
| SP04 - Correction of the<br>propagation speed                           | This parameter in "%" is used for correction of a running time shift or a modified spreading speed of the radar signal.                                                                                                                                                                                                                   |

SP01 - Activate measuring range start limiting





## Set up with the display and adjustment module

|                                                                  | → This compensates for measurement deviations due to longer distances in standpipes or a higher permittivity of the atmosphere in the vessel (e.g. for gases and vapours especially at high pressures).                                                                    |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SP05/06 - Factor for<br>noise averaging rising/<br>falling       | The noise averaging is a temporal, floating average value formation of all signals received by the sensor. The set factor determines the number of averaged echo curves as a Basis 2 exponent (example: factor 2 corresponds to the averaging of $2^2$ [= 4] echo curves). |
|                                                                  | $\rightarrow$ Used for false signals caused by sporadic echoes, e.g. from agitator blades. The false signals are given a lower relevance or amplitude by a larger value of SP05. They are thus more strongly suppressed in their evaluation.                               |
|                                                                  | $\rightarrow$ Use for level echoes with changing amplitude, e.g. due to a turbulent medium surface. The level echoes receive a greater relevance or constant amplitude through a larger value of SP06. They are thus increased in their evaluation.                        |
| $\triangle$                                                      | <b>Note:</b> A higher factor for noise averaging can lead to a longer reaction time or a delay of the measured value update.                                                                                                                                               |
| SP07 - Deactivate filter<br>function "Smooth raw<br>value curve" | This parameter is always switched on ex-factory. It acts as<br>a digital filter over the raw value curve depending on the<br>selected application.                                                                                                                         |
|                                                                  | ightarrow In principle, it causes an improvement in measurement reliability.                                                                                                                                                                                               |
| $\triangle$                                                      | <b>Note:</b><br>Therefore, switching off only makes sense in very special applications that need to be clarified.                                                                                                                                                          |
| SP08 - Offset detection<br>curve for echo analysis               | The detection curve runs above the echo curve with a defined distance (offset). Only the echoes that exceed the detection curve are detected and processed.                                                                                                                |
|                                                                  | This special parameter in " <i>dB</i> " influences the sensitivity of the device against all echoes in the measuring range.                                                                                                                                                |
|                                                                  | $\rightarrow$ An increase of the dB value reduces the sensitivity of the echo detection and signal analysis.                                                                                                                                                               |



## Note:

This affects the level echo to the same extent. Therefore, the application is only used with very strong false signals and simultaneously good reflection properties of the medium.

SP09 - Minimum measurement reliability for level echo selection The measurement reliability is the difference between echo amplitude and detection curve. This parameter defines the





## Set up with the display and adjustment module

required min. measurement reliability in "dB" an echo must have within the focussing range to be accepted as level echo.

 $\rightarrow$  By entering a minimum measurement reliability, false signals below this value are not accepted as a level echo.

SP10 - Additional reliability of false signal storage

This parameter increases the already created false signal suppression by the input value in "dB" over the entire, stored false signal range. It is used when it is expected that false signals such as those from product buildup, condensate formation or agitators will increase in amplitude.

 $\rightarrow$  An increase of the value avoids that such a false signal is accepted as level echo.



Note:

An increase is useful for very heavily fluctuating or amplitude-increasing false signals. It is advised against reducing the value of the default setting.

| SP12 - Activate "Sum-<br>marize echoes" function | This function is used to activate and select the function<br>"Summarize echoes". It consists of the individual param-<br>eters "SP13 - Amplitude difference with function "Summarize<br>echoes"" and "SP14 - Echo distance for function "Summarize<br>echoes" |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  | echoes .                                                                                                                                                                                                                                                      |

 $\rightarrow$  This helps to suppress measured value jumps resulting from material cones or emptying hoppers in bulk solids applications when filling and emptying.

SP13 - Amplitude difference in "Summarize echoes" function

SP14 - Echo distance for "Summarize echoes" function

SP15 - Activate "First large echo" function

This parameter in "*dB*" determines how great the maximum amplitude difference between two adjacent echoes may be in order to summarize them.

This parameter in "*m*" entered here determines how great the distance between the end of the first echo and the start of the second echo may be at the maximum in order for them to be summarized.

When this parameter is activated, the first echo not saved as a false echo with sufficiently great amplitude is selected as a product echo.

> $\rightarrow$  This is useful for very large multiple reflections by e.g. a round vessel lid.

This parameter in "*dB*" determines how much smaller the SP16 - Minimum ampliuseful echo amplitude may be compared to the largest echo tude "First large echo" so that it is evaluated as the first large echo and thus as a product echo

 $\rightarrow$  Up to this value, a relatively weak reflection signal of the medium is thus output as a measured value.





## Set up with the display and adjustment module

| SP17 - Wide focussing<br>range                                              | This parameter determines the measuring window width "m"<br>around the currently measured level echo. Only within this<br>focusing range are changes (location, amplitude, number of<br>echoes) accepted for evaluating the current level.<br>→ If this value is increased, very rapid level changes, e.g. due<br>to collapsing material heaps or surge-like filling/emptying, are<br>accepted even in an extended range.                                                                                                                        |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SP18 - Minimum meas-<br>urement reliability out-<br>side focussing range    | The measurement reliability is the difference in " $dB$ " between<br>echo amplitude and detection curve. This parameter defines<br>the required min. measurement reliability an echo must have<br>outside the focussing range to be accepted as useful echo.<br>$\rightarrow$ This is useful to obtain the measured value also in case of<br>sporadic loss of the level signal, e. g. with foam generation.                                                                                                                                      |
| SP19 - Time for opening<br>the focussing range                              | If no more reflection can be detected within the focussing range, a measuring window opens. This parameter defines the time in "s" until it opens. This can be the case, for example, in the event of a level change without an evaluable reflection signal or in the event of an echo outside the focussing range with a greater useful echo probability. → As a result, on reaching this echo with high useful echo probability, this is evaluated as a useful echo and output as the current level.                                           |
| SP22 - Measured value<br>offset                                             | The reference plane for the measurement with radar sensors<br>is the lower edge of the flange or the sealing surface of the<br>thread. The sensors are calibrated to this reference plane at<br>the factory. This parameter enables an adaptation of this fac-<br>tory setting, e.g. to subsequently attached mounting facilities<br>such as adapter flanges, threaded adapters, etc.<br>$\rightarrow$ A possible offset error (constant error of the measured<br>distance over the entire measuring range) is compensated for<br>by this input. |
| SP24 - Factor for ad-<br>ditional reliability at the<br>measuring range end | This value in "%" is additional safety below the 0 % adjust-<br>ment related to the measuring range.<br>→ It supports the detection of an echo when the vessel is<br>completely empty, even with unfavourable vessel bottom                                                                                                                                                                                                                                                                                                                      |
| SP HART - HART signal                                                       | shapes.<br>This parameter serves to activate/deaxctivate the HART signal<br>in the output.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| On paper                                                                    | <b>Save parameter adjustment data</b><br>We recommended writing down the adjustment data, e.g. in<br>this instructions manual, and archiving them afterwards. They<br>are thus available for multiple use or service purposes.                                                                                                                                                                                                                                                                                                                   |





## Set up with the display and adjustment module

In the display and adjustment module If the instrument is equipped with a display and adjustment module, the parameter adjustment data can be saved therein. The procedure is described in menu item "Copy device settings".





## Setup with smartphone/tablet (Bluetooth)

#### Preparations

System requirements

Make sure that your smartphone/tablet meets the following system requirements:

- Operating system: iOS 13 or newer
- Operating system: Android 5.1 or newer
- Bluetooth 4.0 LE or newer

Download the adjustment app from the "Apple App Store", "Google Play Store" or "Baidu Store" to your smartphone or tablet.

Make sure that the Bluetooth function of the display and adjustment module is activated. For this, the switch on the bottom side must be set to "On".

Factory setting is "On".

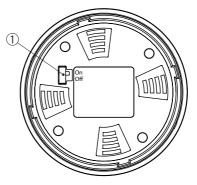



Fig. 32: Activate Bluetooth

1 Switch On = Bluetooth active Off = Bluetooth not active

#### Connecting

Start the adjustment app and select the function "Setup". Connecting The smartphone/tablet searches automatically for Bluetoothcapable instruments in the area. The message "Connecting ..." is displayed. The devices found are listed and the search is automatically continued. Select the requested instrument in the device list. When establishing the connection for the first time, the oper-Authenticate ating tool and the sensor must authenticate each other. After the first correct authentication, each subsequent connection is made without a new authentication query.



 
 Four-wire: 4 ... 20 mA/HART; 9.6 ... 48 V DC;

 20 ... 42 V AC; 50/60 Hz

 Series NP 555
 Technical information / Instruction manual



# Setup with smartphone/tablet (Bluetooth)

| Enter Bluetooth access<br>code | For authentication, enter the 6-digit Bluetooth access code in the next menu window. You can find the code on the information sheet " <i>Pins and Codes</i> " in the device packaging.                                                 |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | For the very first connection, the adjustment unit and the sensor must authenticate each other.                                                                                                                                        |
|                                | Bluetooth access code OK                                                                                                                                                                                                               |
|                                | Enter the 6 digit Bluetooth access code of your Bluetooth instrument.                                                                                                                                                                  |
|                                | Fig. 33: Enter Bluetooth access code                                                                                                                                                                                                   |
| i                              | <b>Note:</b><br>If an incorrect code is entered, the code can only be entered<br>again after a delay time. This time gets longer after each<br>incorrect entry.                                                                        |
|                                | The message " <i>Waiting for authentication</i> " is displayed on the smartphone/tablet.                                                                                                                                               |
| Connected                      | After connection, the sensor adjustment menu is displayed on the respective adjustment tool.                                                                                                                                           |
|                                | If the Bluetooth connection is interrupted, e.g. due to a too<br>large distance between the two devices, this is displayed on<br>the adjustment tool. The message disappears when the con-<br>nection is restored.                     |
| Change device code             | Parameter adjustment of the device is only possible if the<br>parameter protection is deactivated or the adjustment re-<br>leased. When delivered, parameter protection is deactivated<br>by default and can be activated at any time. |
|                                | It is recommended to enter a personal 6-digit device code. To do this, go to menu " <i>Extended functions</i> ", " <i>Access protection</i> ", menu item " <i>Protection of the parameter adjustment</i> ".                            |
|                                | Parameter adjustment                                                                                                                                                                                                                   |
| Enter parameters               | <ul><li>The sensor adjustment menu is divided into two areas, which are arranged next to each other or one below the other, depending on the adjustment tool.</li><li>Navigation section</li></ul>                                     |
|                                | Menu item display                                                                                                                                                                                                                      |
|                                | The selected menu item can be recognized by the colour change.                                                                                                                                                                         |
|                                | Enter the requested parameters and confirm via the keyboard<br>or the editing field. The settings are then active in the sensor.                                                                                                       |
|                                | Close the app to terminate connection.                                                                                                                                                                                                 |





### Set up with PC/notebook

## System requirements

## **Preparations (Bluetooth)**

Make sure that your PC/notebook meets the following system requirements:

- Operating system: Windows 10 or newer
- DTM Collection
- Bluetooth 4.0 LE or newer

Make sure that the Bluetooth function of the display and adjustment module is activated. For this, the switch on the bottom side must be set to "On".

Factory setting is "On".

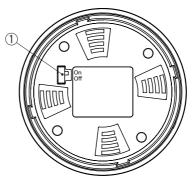



Fig. 34: Activate Bluetooth

1 Switch

On = Bluetooth active Off = Bluetooth not active

Activate Bluetooth con-Activate the Bluetooth connection via the project assistant.

#### Note:

1

Older systems do not always have an integrated Bluetooth LE. In these cases, a Bluetooth USB adapter is required. Activate the Bluetooth USB adapter using the Project Wizard.

After activating the integrated Bluetooth or the Bluetooth USB adapter, devices with Bluetooth are found and created in the project tree.

## **Connecting (Bluetooth)**

**Connecting** Select the requested device for the online parameter adjustment in the project tree.

Authenticate When establishing the connection for the first time, the operating tool and the device must authenticate each other. After the first correct authentication, each subsequent connection is made without a new authentication query.





## Set up with PC/notebook

| Enter Bluetooth access<br>code | For authentication, enter in the next menu window th<br>Bluetooth access code:                                                                   | ne 6-digi           | t |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---|
|                                | Bluetooth                                                                                                                                        | □ ×                 |   |
|                                | Authentication                                                                                                                                   |                     |   |
|                                | Device name                                                                                                                                      |                     |   |
|                                | Device TAG                                                                                                                                       |                     |   |
|                                | Serial number                                                                                                                                    |                     |   |
|                                | Enter the 6 digit Bluetooth access code of your Bluetooth instrument.      Bluetooth access code     Forgotten your Bluetooth access     OK      | ess code?<br>Cancel |   |
|                                | Fig. 35: Enter Bluetooth access code                                                                                                             |                     |   |
|                                | You can find the code on the outside of the device ho<br>and on the information sheet " <i>PINs and Codes</i> " in the<br>packaging.             | 0                   |   |
| i                              | <b>Note:</b><br>If an incorrect code is entered, the code can only be again after a delay time. This time gets longer after ear incorrect entry. |                     |   |
|                                | The message " <i>Waiting for authentication</i> " is displayed PC/notebook.                                                                      | l on the            |   |

ConnectedAfter connection, the device DTM appears.<br/>If the connection is interrupted, e.g. due to a too large dis-<br/>tance between device and adjustment tool, this is displayed<br/>on the adjustment tool. The message disappears when the<br/>connection is restored.Change device codeParameter adjustment of the device is only possible if the<br/>parameter protection is deactivated or the adjustment re-<br/>leased. When delivered, parameter protection is deactivated<br/>by default and can be activated at any time.<br/>It is recommended to enter a personal 6-digit device code. To<br/>do this, go to menu "Extended functions", "Access protection",<br/>menu item "Protection of the parameter adjustment".





## Set up with PC/notebook

## **Parameter adjustment**

The further setup steps with detailed descriptions can be found in the online help of PACTware and the DTMs.



Keep in mind that for the setup of device, the current version of the DTM Collection must be used.

The latest DTM Collection and PACTware version can be downloaded free of charge via the Internet.

## Save parameter adjustment data

We recommend documenting or saving the parameterisation data via PACTware. That way the data are available for multiple use or service purposes.





Menu overview

# Display and adjustment module

#### Lock/Unlock adjustment

| Menu item                   | Parameter | Selection | Default setting                        |
|-----------------------------|-----------|-----------|----------------------------------------|
| Lock/Unlock ad-<br>justment |           |           | SIL and Security:<br>locked            |
|                             |           |           | Neither SIL, nor<br>Security: released |

#### Setup

| Menu item                  | Parameter                   | Selection                                                                                                                                                                                                                                                                                                | Default setting                                                                |
|----------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Measurement loop<br>name   |                             |                                                                                                                                                                                                                                                                                                          | Sensor                                                                         |
| Distance unit              | Distance unit               | mm, m, in, ft                                                                                                                                                                                                                                                                                            | m                                                                              |
| Type of medium             | Type of medium              | Liquid                                                                                                                                                                                                                                                                                                   | Liquid <sup>1)</sup>                                                           |
|                            |                             | Bulk solid                                                                                                                                                                                                                                                                                               | Bulk solid <sup>2)</sup>                                                       |
| Application                | Application - liq-<br>uid   | Storage tank, agitator tank, dosing<br>tank, standpipe, tank/collection ba-<br>sin, plastic tank (measurement through<br>tank top), mobile plastic tank (IBC),<br>level measurement in waters, flow<br>measurement flume/overflow, pump<br>station/pump shaft, combined sewer<br>overflow, demonstration | Storage tank <sup>3)</sup>                                                     |
|                            | Application - bulk<br>solid | Silo, bunker, crusher, heap, demon-<br>stration                                                                                                                                                                                                                                                          | Silo4)                                                                         |
| Vessel height              |                             |                                                                                                                                                                                                                                                                                                          | Recommended<br>meas. range, see<br>chapter " <i>Technical</i><br><i>data</i> " |
| Distance A (max.<br>value) | Max. value                  |                                                                                                                                                                                                                                                                                                          | Max. adjustment<br>100 % corresponds<br>to 0,000 m                             |
| Distance B (min.<br>value) | Min. value                  |                                                                                                                                                                                                                                                                                                          | Min. adjustment<br>0 % corresponds<br>to 120,000 m                             |

<sup>1)</sup> Plastic horn antenna, thread with integrated antenna system, flange with encapsulated antenna system

- <sup>2)</sup> Flange with lens antenna
- <sup>3)</sup> Plastic horn antenna, thread with integrated antenna system, flange with encapsulated antenna system
- <sup>4)</sup> Flange with lens antenna





# Menu overview

# Extended settings

| Menu item        | Parameter                                | Selection                                                                                                                                                   | Default setting        |
|------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Temperature unit |                                          | °С, °F, К                                                                                                                                                   | °C                     |
| Damping          | Integration time                         | 0 999 s                                                                                                                                                     | 0 s                    |
| Current output   | Output value                             | Percent, linearized percent, filling<br>height, distance, scaled, measurement<br>reliability, electronics temperature,<br>measuring rate, operating voltage | Percent                |
|                  | Output character-                        | 0 100 % correspond to 4 20 mA                                                                                                                               | 0 100 % cor-           |
|                  | istics                                   | 0 100 % correspond to 20 4 mA                                                                                                                               | respond to<br>4 20 mA  |
|                  | Current range                            | 4 20 mA                                                                                                                                                     | 4 20 mA                |
|                  |                                          | 3.8 20.5 mA                                                                                                                                                 |                        |
|                  | Reaction when<br>malfunctions oc-<br>cur | $\leq$ 3.6 mA, $\geq$ 21 mA, last valid measured value                                                                                                      | ≤ 3.6 mA               |
| Linearisation    | Linearization type<br>- liquid           | Linear, cylindrical tank, spherical tank,<br>Venturi, trapezoidal weir, rectangular<br>weir, Palmer-Bowlus flume, V-Notch,<br>triangular overfall           | Linear                 |
|                  | Linearization type<br>- bulk solids      | Linear, conical bottom, pyramid bot-<br>tom, sloping bottom                                                                                                 | Linear                 |
|                  | Intermediate<br>height "h"               |                                                                                                                                                             |                        |
| Scaling          | Scaling size                             | Scaling size (dimensionless, mass, vol-<br>ume, height, pressure, flow, others)                                                                             | Dimensionless          |
|                  |                                          | Scaling unit (unit selection depending on scaling size, user-defined)                                                                                       | -                      |
|                  | Scaling format                           | #, #.#, #.##, #.###, #.####                                                                                                                                 | #                      |
|                  | Scaling                                  | Scaling                                                                                                                                                     | 100 % correspond<br>to |
|                  |                                          |                                                                                                                                                             | 0 % correspond to      |





#### Menu overview

| Menu item                     | Parameter                               | Selection                                                                                                                                                                                                                                                                                                                 | Default setting                                   |
|-------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Indication                    | Menu language                           | German, English, French, Spanish,<br>Portuguese, Italian, Dutch, Russian,<br>Chinese, Japanese, Turkish, Polish,<br>Czech                                                                                                                                                                                                 | Language is set<br>with the first op-<br>eration. |
|                               | Presentation                            | One measured value, measured value and bargraph, two measured values                                                                                                                                                                                                                                                      | One measured<br>value                             |
|                               | Displayed val-<br>ues 1, 2              | Percent, linearized percent, filling<br>height, distance, scaled, measurement<br>reliability, electronics temperature,<br>current output, current output 2                                                                                                                                                                | Percent                                           |
|                               | Backlight                               | On, Off                                                                                                                                                                                                                                                                                                                   | On                                                |
| False signal sup-<br>pression | False signal sup-<br>pression           | Create new, expand, delete all                                                                                                                                                                                                                                                                                            | -                                                 |
| Date/Time                     | Date/Time                               | Date                                                                                                                                                                                                                                                                                                                      | Actual date                                       |
|                               |                                         | Format: 24 h, 12 h                                                                                                                                                                                                                                                                                                        | 24 h                                              |
|                               |                                         | Time                                                                                                                                                                                                                                                                                                                      | Actual time                                       |
| HART mode                     | HART address                            | 0 63                                                                                                                                                                                                                                                                                                                      | 0                                                 |
|                               | Output mode                             | Analogue current output with HART, fix current (4 mA) with HART                                                                                                                                                                                                                                                           | Analogue current<br>output with HART              |
| Mode                          | Mode                                    | Mode 1: EU, Albania, Andorra, Azer-<br>baijan, Australia, Belarus, Bosnia and<br>Herzegovina, Canada, Liechtenstein,<br>Moldavia, Monaco, Montenegro, Moroc-<br>co, New Zealand, Northern Macedonia,<br>Norway, San Marino, Saudi Arabia, Ser-<br>bia, South-Africa, Switzerland, Turkey,<br>Ukraine, United Kingdom, USA | Mode 1                                            |
|                               |                                         | Mode of operation 2: Brazil, Japan,<br>South Korea, Taiwan, Thailand<br>Mode of operation 3: India, Malaysia<br>Mode 4: Russia                                                                                                                                                                                            |                                                   |
|                               | Voltage supply                          | Permanent voltage supply                                                                                                                                                                                                                                                                                                  | Permanent voltage                                 |
|                               |                                         | Not permanent voltage supply                                                                                                                                                                                                                                                                                              | supply                                            |
| Copy instrument<br>settings   |                                         | Read from sensor, store in sensor                                                                                                                                                                                                                                                                                         | -                                                 |
| Special param-<br>eters       | See separate men<br>operating instructi | u overview at the end oc the chapter " <i>Mer</i><br>ons.                                                                                                                                                                                                                                                                 | nu overview" of the                               |





### Menu overview

#### Access protection

| Menu item         | Parameter                          | Selection                          | Default setting                                |
|-------------------|------------------------------------|------------------------------------|------------------------------------------------|
| Access protection | Bluetooth access<br>code           | Bluetooth access code              |                                                |
|                   | Protection of the parameterization | Protection of the parameterization | SIL and Security:<br>activated                 |
|                   |                                    |                                    | Neither SIL, nor<br>Security: deacti-<br>vated |
|                   | Device code                        | Device code                        |                                                |

#### Reset

| Menu item | Parameter | Selection                          | Default setting |
|-----------|-----------|------------------------------------|-----------------|
| Reset     | Reset     | Reset to factory settings, Restart | -               |

# Diagnostics

| Menu item                 | Parameter                    | Selection/Display                                                              | Default setting              |
|---------------------------|------------------------------|--------------------------------------------------------------------------------|------------------------------|
| Diagnosis status          | Diagnosis status             | Diagnosis status                                                               | -                            |
|                           |                              | Change counter                                                                 | -                            |
|                           |                              | Checksum (CRC) current                                                         | Date parameter<br>adjustment |
|                           |                              | Checksum (CRC) last SIL locking                                                | Date last SIL lock-<br>ing   |
| Echo curve                |                              | Echo curve                                                                     | Indication of echo<br>curve  |
| Peak indicator            | Distance                     | Current value, min. distance, max. dis-<br>tance                               | Actual value                 |
|                           | Measurement reli-<br>ability | Current value, min. measurement reli-<br>ability, max. measurement reliability | Actual value                 |
|                           | Measuring rate               | Current value, min. meas. rate, max.<br>meas. rate                             | Actual value                 |
|                           | Electronics tem-<br>perature | Current value, min. eletronics temper-<br>ature, max. electronics temperature  | Actual value                 |
|                           | Operating voltage            | Current value, min. operating voltage,<br>max. operating voltage               | Actual value                 |
| Diagnostic behav-<br>iour | Behaviour with<br>echo loss  | Last measured value, maintenance<br>message, fault signal                      | Last measured<br>value       |
|                           | Time until fault<br>signal   | Time until fault signal                                                        |                              |





#### Menu overview

| Menu item                   | Parameter               | Selection/Display                                                                                                                                                                                  | Default setting             |
|-----------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Sensor information          |                         | Device name, serial number, hardware/<br>software version, device revision, fac-<br>tory calibration date                                                                                          | -                           |
| Sensor character-<br>istics |                         |                                                                                                                                                                                                    | Configuration fea-<br>tures |
| Simulation                  | Measured value          | Percent, linearized percent, filling<br>height, distance, scaled, measurement<br>reliability, electronics temperature,<br>measuring rate, operating voltage, cur-<br>rent output, current output 2 | Percent                     |
| Device memory               | Echo curve of the setup | Save echo curve of setup                                                                                                                                                                           | -                           |
|                             | Echo curve mem-<br>ory  | Echo curve memory                                                                                                                                                                                  |                             |

# Adjustment app and PACTware/DTM

#### Lock/Unlock adjustment

| Menu item                   | Parameter | Selection    | Default setting                        |
|-----------------------------|-----------|--------------|----------------------------------------|
| Lock/Unlock ad-<br>justment |           | Lock, unlock | SIL and Security:<br>locked            |
|                             |           |              | Neither SIL, nor<br>Security: released |

#### Setup

| Menu item                | Parameter      | Selection     | Default setting          |
|--------------------------|----------------|---------------|--------------------------|
| Measurement loop<br>name |                |               | Sensor                   |
| Distance unit            | Distance unit  | mm, m, in, ft | m                        |
| Type of medium           | Type of medium | Liquid        | Liquid <sup>1)</sup>     |
|                          |                | Bulk solid    | Bulk solid <sup>2)</sup> |

- <sup>1)</sup> Plastic horn antenna, thread with integrated antenna system, flange with encapsulated antenna system
- <sup>2)</sup> Flange with lens antenna





#### Menu overview

| Menu item                  | Parameter                   | Selection                                                                                                                                                                                                                                                                                                | Default setting                                                        |
|----------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Application                | Application - liq-<br>uid   | Storage tank, agitator tank, dosing<br>tank, standpipe, tank/collection ba-<br>sin, plastic tank (measurement through<br>tank top), mobile plastic tank (IBC),<br>level measurement in waters, flow<br>measurement flume/overflow, pump<br>station/pump shaft, combined sewer<br>overflow, demonstration | Storage tank <sup>1)</sup>                                             |
|                            | Application - bulk<br>solid | Silo, bunker, crusher, heap, demon-<br>stration                                                                                                                                                                                                                                                          | Silo <sup>2)</sup>                                                     |
| Vessel height              |                             |                                                                                                                                                                                                                                                                                                          | Recommended<br>meas. range, see<br>chapter " <i>Technical</i><br>data" |
| Distance A (max.<br>value) | Max. value                  |                                                                                                                                                                                                                                                                                                          | Max. adjustment<br>100 % corresponds<br>to 0,000 m                     |
| Distance B (min.<br>value) | Min. value                  |                                                                                                                                                                                                                                                                                                          | Min. adjustment<br>0 % corresponds<br>to 120,000 m                     |

## **Extended settings**

| Menu item | Parameter                          | Selection | Default setting |
|-----------|------------------------------------|-----------|-----------------|
| Units     | Temperature unit of the instrument | °C, °F    | °C              |
| Damping   | Integration time                   | 0 999 s   | 1 s             |

<sup>&</sup>lt;sup>1)</sup> Plastic horn antenna, thread with integrated antenna system, flange with encapsulated antenna system

<sup>&</sup>lt;sup>2)</sup> Flange with lens antenna





#### Menu overview

| Menu item      | Parameter                                | Selection                                                                                                                                                   | Default setting          |
|----------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Current output | Output value                             | Percent, linearized percent, filling<br>height, distance, scaled, measurement<br>reliability, electronics temperature,<br>measuring rate, operating voltage | Percent                  |
|                | Initial value -<br>Characteristic        | Initial value - characteristics (4 mA)                                                                                                                      | 4 mA correspond<br>to    |
|                | Final value - Char-<br>acteristic        | End value - characteristics (20 mA)                                                                                                                         | 20 mA corre-<br>spond to |
|                | Output character-                        | 0 100 % correspond to 4 20 mA                                                                                                                               | 0 100 % cor-             |
|                | istics                                   | 0 100 % correspond to 20 4 mA                                                                                                                               | respond to<br>4 20 mA    |
|                | Current range                            | 4 20 mA                                                                                                                                                     | 4 20 mA                  |
|                |                                          | 3.8 20.5 mA                                                                                                                                                 |                          |
|                | Reaction when malfunctions oc-           | ≤ 3.6 mA, ≥ 21 mA, last valid meas-<br>ured value                                                                                                           | ≤ 3.6 mA                 |
|                | Reaction when<br>malfunctions oc-<br>cur | ≤ 3.6 mA, ≥ 21 mA                                                                                                                                           | ≤ 3.6 mA                 |
| Linearisation  | Linearization type<br>- liquid           | Linear, cylindrical tank, spherical tank,<br>Venturi, trapezoidal weir, rectangular<br>weir, Palmer-Bowlus flume, V-Notch,<br>triangular overfall           | Linear                   |
|                | Linearization type<br>- bulk solids      | Linear, conical bottom, pyramid bot-<br>tom, sloping bottom                                                                                                 | Linear                   |
|                | Intermediate<br>height "h"               |                                                                                                                                                             | -                        |
| Scaling        | Scaling size                             | Dimensionless, mass, volume, height, pressure, flow, others                                                                                                 | Dimensionless            |
|                | Scaling unit                             | Unit selection depending on scaling size, user-defined                                                                                                      | -                        |
|                | Name of the unit                         |                                                                                                                                                             | -                        |
|                | Scaling format                           | #, #.#, #.##, #.###, #.####                                                                                                                                 | #                        |
|                | Scaling                                  | 100 % correspond to                                                                                                                                         | 100 L                    |
|                |                                          | 0 % correspond to                                                                                                                                           | 0 L                      |





### Menu overview

| Menu item                     | Parameter                     | Selection                                                                                                                                                                                                                                                                                                      | Default setting              |
|-------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Indication                    | Menu language<br>(PLICSCOM)   | German, English, French, Spanish,<br>Portuguese, Italian, Dutch, Russian,<br>Chinese, Japanese, Turkish, Polish,<br>Czech, Turkish                                                                                                                                                                             | Order-specific               |
|                               | Presentation                  | One measured value, measured value and bargraph, two measured values                                                                                                                                                                                                                                           | One measured<br>value        |
|                               | Displayed val-<br>ues 1, 2    | Percent, linearized percent, filling<br>height, distance, scaled, measurement<br>reliability, electronics temperature,<br>current output, current output 2                                                                                                                                                     | Percent                      |
|                               | Backlight                     | On, Off                                                                                                                                                                                                                                                                                                        | On                           |
| False signal sup-<br>pression | False signal sup-<br>pression | Create new, extend, delete area, de-<br>lete all                                                                                                                                                                                                                                                               | -                            |
| HART variables                | HART variables                | Primary Value (PV)                                                                                                                                                                                                                                                                                             | Linearized percent           |
|                               |                               | Secondary Value (SV)                                                                                                                                                                                                                                                                                           | Distance                     |
|                               |                               | Tertiary Value (TV)                                                                                                                                                                                                                                                                                            | Measurement reli-<br>ability |
|                               |                               | Quarternary Value (QV)                                                                                                                                                                                                                                                                                         | Electronics tem-<br>perature |
|                               |                               | LONG-TAG                                                                                                                                                                                                                                                                                                       |                              |
|                               |                               | MESSAGE                                                                                                                                                                                                                                                                                                        | MSG                          |
| Date/Time                     | Date/Time                     | Date                                                                                                                                                                                                                                                                                                           | Actual date                  |
|                               |                               | Format: 24 h, 12 h                                                                                                                                                                                                                                                                                             | 24 h                         |
|                               |                               | Time                                                                                                                                                                                                                                                                                                           | Actual time                  |
| Mode                          | Mode                          | Mode 1: EU, Albania, Andorra, Azer-<br>baijan, Australia, Belarus, Bosnia and<br>Herzegovina, Canada, Liechtenstein,<br>Moldavia, Monaco, Montenegro, New<br>Zealand, Northern Macedonia, Nor-<br>way, San Marino, Saudi Arabia, Serbia,<br>South-Africa, Switzerland, Turkey,<br>Ukraine, United Kingdom, USA | Mode 1                       |
|                               |                               | Mode of operation 2: Brazil, Japan,<br>South Korea, Taiwan, Thailand                                                                                                                                                                                                                                           |                              |
|                               |                               | Mode of operation 3: India, Malaysia<br>Mode 4: Russia                                                                                                                                                                                                                                                         |                              |
|                               | Energy supply                 | Permanent power supply, non-perma-<br>nent power supply                                                                                                                                                                                                                                                        | Permanent voltage<br>supply  |
| Special param-<br>eters       | See separate men              | u overview at the end of the chapter " <i>Mer</i>                                                                                                                                                                                                                                                              |                              |





### Menu overview

## Access protection

| Menu item         | Parameter                          | Selection                          | Default setting |
|-------------------|------------------------------------|------------------------------------|-----------------|
| Access protection | Bluetooth access<br>code           | Bluetooth access code              |                 |
|                   | Protection of the parameterization | Protection of the parameterization |                 |
|                   | Device code                        | Device code                        |                 |

#### Reset

| Menu item | Parameter | Selection                          | Default setting |
|-----------|-----------|------------------------------------|-----------------|
| Reset     | Reset     | Reset to factory settings, Restart | -               |

# Diagnostics

| Menu item  | Parameter                            | Selection/Display                                                                                                                                                                                          | Default setting             |
|------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Status     | Diagnosis status                     | Diagnosis status                                                                                                                                                                                           | -                           |
|            | Status parameter<br>adjustment       | Change counter, modification date,<br>checksum (CRC) current, date check-<br>sum current, checksum (CRC) last SIL<br>locking, date last SIL locking                                                        | -                           |
|            | Measured value<br>status             | Percent, linearized percent, filling<br>height, distance, scaled, measurement<br>reliability                                                                                                               | -                           |
|            | Status outputs                       | Current output                                                                                                                                                                                             | -                           |
|            | HART Device Sta-<br>tus              | Field device malfunction, Configura-<br>tion changed, Cold start, More status<br>available, Analog output fixed, Analog<br>output saturated, Non-primary variable<br>of limits, Primary variable of limits | -                           |
|            | Status additional<br>measured values | Electronics temperature, measuring rate, operating voltage                                                                                                                                                 | -                           |
| Echo curve |                                      | Echo curve                                                                                                                                                                                                 | Indication of echo<br>curve |





# Menu overview

| Menu item                      | Parameter                                                                | Selection/Display                                                                                                                                                                                                                                                      | Default setting                                                        |
|--------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Peak indicator                 | Distance                                                                 | Current value, min. distance, max. dis-<br>tance                                                                                                                                                                                                                       |                                                                        |
|                                | Measurement reli-<br>ability                                             | Current value, min. measurement reli-<br>ability, max. measurement reliability                                                                                                                                                                                         | _                                                                      |
|                                | Measuring rate                                                           | Current value, min. meas. rate, max.<br>meas. rate                                                                                                                                                                                                                     | Actual value                                                           |
|                                | Electronics tem-<br>perature                                             | Current value, min. eletronics temper-<br>ature, max. electronics temperature                                                                                                                                                                                          |                                                                        |
|                                | Operating voltage                                                        | Current value, min. operating voltage,<br>max. operating voltage                                                                                                                                                                                                       |                                                                        |
| Measured values                | Measured values                                                          | Percent, linearized percent, filling<br>height, distance, scaled, measurement<br>reliability                                                                                                                                                                           |                                                                        |
|                                | Additional meas-<br>ured values                                          | Electronics temperature, measuring rate, operating voltage                                                                                                                                                                                                             |                                                                        |
|                                | Outputs                                                                  | Current output, Primary Value (PV),<br>Secondary Value (SV), Tertiary Value<br>(TV), Quarternary Value (QV)                                                                                                                                                            |                                                                        |
| Diagnostic behav-<br>iour      | Echo loss                                                                | Behaviour in case of echo loss, time<br>until fault signal                                                                                                                                                                                                             | Output fault cur-<br>rent                                              |
|                                | Electronics<br>temperature - Be-<br>haviour outside<br>the specification | Outside the specification, output fault current                                                                                                                                                                                                                        |                                                                        |
|                                | Status signals                                                           | Activation of: Function control, Out-<br>side the specification, Maintenance<br>required                                                                                                                                                                               | Function check,<br>outside specifica-<br>tion, maintenance<br>required |
| Sensor information             |                                                                          | Device name, order code, serial num-<br>ber, hardware/software version, Device<br>Revision, factory calibration date, de-<br>vice address, Loop current mode,<br>Fieldbus Profile Rev., Expanded Device<br>Type, sensor acc. to SIL, sensor acc. to<br>WHG, Bustype ID | -                                                                      |
| Sensor character-<br>istics    |                                                                          |                                                                                                                                                                                                                                                                        | Configuration fea-<br>tures                                            |
| Simulation                     | Measured value                                                           | Percent, linearized percent, filling<br>height, distance, scaled, measurement<br>reliability, electronics temperature,<br>measuring rate, operating voltage, cur-<br>rent output                                                                                       | Percent                                                                |
| Measured value<br>memory (DTM) |                                                                          |                                                                                                                                                                                                                                                                        |                                                                        |





# Menu overview

| Menu item     | Parameter               | Selection/Display                   | Default setting |
|---------------|-------------------------|-------------------------------------|-----------------|
| Device memory | Echo curve of the setup | Save echo curve of setup            |                 |
|               | Echo curve mem-<br>ory  | Echo curve memory                   |                 |
|               | Measured value memory   | Measured value memory               | -               |
|               | Event memory            | Event memory                        |                 |
| Function test |                         | Start proof test, start device test |                 |

# **Special parameters**

| Parameter | Designation                                                                                 | Presentation | Default setting        |
|-----------|---------------------------------------------------------------------------------------------|--------------|------------------------|
| SP1, SP2  | Activate measuring range<br>start limiting<br>Manual limiting of meas-<br>uring range start | 100 %        | Deactivated<br>0.000 m |
| SP3       | Safety on the vessel bot-<br>tom or measuring range<br>end                                  | 0 %          | 1.000 m                |
| SP4       | Correction of the propa-<br>gation speed                                                    |              | 0.0 %                  |
| SP5, SP6  | Factor for noise averag-<br>ing rising                                                      |              | 2                      |
|           | Factor for noise averag-<br>ing falling                                                     |              | 2                      |
| SP7       | Deactivate filter function<br>"Smooth raw value curve"                                      | active       | Deactivated            |
| SP8       | Offset detection curve for echo analysis                                                    | >× dB        | 8 dB                   |
| SP9       | Minimum measurement<br>reliability for level echo<br>selection                              | 1+dB         | 0 dB                   |





### Menu overview

| Parameter | Designation                                                      | Presentation | Default setting                                      |
|-----------|------------------------------------------------------------------|--------------|------------------------------------------------------|
| SP10      | Additional reliability for false signal storage                  |              | 3 dB                                                 |
| SP12      | Activate "Summarize ech-<br>oes" function                        |              | Deactivated                                          |
| SP13      | Amplitude difference in<br>"Summarize echoes" func-<br>tion      | dB           | 12 dB                                                |
| SP14      | Echo distance for "Sum-<br>marize echoes" function               |              | 0.500 m                                              |
| SP15      | Activate function meas-<br>urement of the "first large<br>echo"  | dB<br>1 2    | Deactivated                                          |
| SP16      | Minimum amplitude func-<br>tion "First large echo"               |              | 12 dB                                                |
| SP17      | Wide focussing range                                             |              | 240 m                                                |
| SP18      | Minimum measurement<br>reliability outside focus-<br>sing range  | dB           | 6 dB                                                 |
| SP19      | Time for opening the fo-<br>cussing range                        |              | 0 s                                                  |
| SP22      | Measured value offset                                            |              | 0.000 m                                              |
| SP24      | Factor for additional reli-<br>ability at measuring range<br>end | 0%           | 0.0 %                                                |
| SP HART   | Activate/Deactivate HART                                         |              | Activated                                            |
| SP SIL    | Activate/Deactivate SIL                                          |              | Activated <sup>1)</sup><br>Deactivated <sup>2)</sup> |

<sup>1)</sup> SIL versions

<sup>2)</sup> Non-SIL versions (cannot be activated)





#### Set up with other systems

## DD adjustment programs

Device descriptions as Enhanced Device Description (EDD) are available for DD adjustment programs such as, for example, AMS<sup>™</sup> and PDM.

## Field Communicator 375, 475

Device descriptions for the instrument are available as EDD for parameterisation with Field Communicator 375 or 475.

Integrating the EDD into the Field Communicator 375 or 475 requires the "Easy Upgrade Utility" software, which is available from the manufacturer. This software is updated via the Internet and new EDDs are automatically accepted into the device catalogue of this software after they are released by the manufacturer. They can then be transferred to a Field Communicator.

In the HART communication, the Universal Commands and a part of the Common Practice Commands are supported.





#### **Diagnosis, asset management and service**

### Maintenance

quired in normal operation.

Maintenance

Precaution measures against buildup



In some applications, product buildup on the antenna system can influence the measurement result.

If the device is used properly, no special maintenance is re-

Depending on the sensor and application, take measures to avoid heavy soiling of the antenna system. If necessary, clean the antenna system in certain intervals.

Cleaning

The cleaning helps that the type label and markings on the instrument are visible.



Note:

Note:

Unsuitable cleaning agents and methods can damage the device. To avoid this, observe the following:

- Use only cleaning agents which do not corrode the housings, type label and seals
- Use only cleaning methods corresponding to the housing protection rating

## Measured value and event memory

The instrument has several memories available for diagnostic purposes. The data remain there even in case of voltage interruption.

**Measured value memory** Up to 100,000 measured values are stored in the sensor in a ring memory. Each entry contains date/time as well as the respective measured value.

Storable values are for example:

- Distance
- Filling height
- Percentage value
- Lin. percent
- Scaled
- Current value
- Measurement reliability
- Electronics temperature

When the instrument is shipped, the measured value memory is active and stores distance, measurement reliability and electronics temperature every 3 minutes.

The requested values and recording conditions are set via a PC with PACTware/DTM or the control system with EDD. Data are thus read out and also reset.





# Diagnosis, asset management and service

| <ul> <li>Up to 500 events are automatically stored with a time stamp<br/>in the sensor (non-deletable). Each entry contains date/time,<br/>event type, event description and value.</li> <li>Event types are for example: <ul> <li>Modification of a parameter</li> <li>Switch-on and switch-off times</li> <li>Status messages (according to NE 107)</li> <li>Error messages (according to NE 107)</li> </ul> </li> </ul>                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The data are read out via a PC with PACTware/DTM or the control system with EDD.                                                                                                                                                                                                                                                                                                                                                                                                                              |
| The echo curves are stored with date and time and the cor-<br>responding echo data.                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>Echo curve of the setup:<br/>This is used as reference echo curve for the measurement conditions during setup. Changes in the measurement conditions during operation or buildup on the sensor can thus be recognized. The echo curve of the setup is stored via:</li> <li>PC with PACTware/DTM</li> <li>Control system with EDD</li> <li>Display and adjustment module</li> </ul> Further echo curves can be stored in a ring buffer in this memory section. Additional echo curves are stored via: |
| <ul><li>PC with PACTware/DTM</li><li>Control system with EDD</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Asset Management function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| The instrument features self-monitoring and diagnostics ac-<br>cording to NE 107 and VDI/VDE 2650. In addition to the status<br>messages in the following tables there are more detailed er-<br>ror messages available under the menu item " <i>Diagnostics</i> " via<br>the respective adjustment module.                                                                                                                                                                                                    |
| <ul> <li>The status messages are divided into the following categories:</li> <li>Failure</li> <li>Function check</li> <li>Out of specification</li> <li>Maintenance required</li> <li>and explained by pictographs:</li> </ul>                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |





# Diagnosis, asset management and service




Fig. 36: Pictographs of the status messages

- 1 Failure red
- 2 Out of specification yellow
- 3 Function check orange
- 4 Maintenance required blue

#### Malfunction (Failure):

Due to a malfunction in the instrument, a fault signal is output.

This status message is always active. It cannot be deactivated by the user.

### **Function check:**

The instrument is being worked on, the measured value is temporarily invalid (for example during simulation).

This status message is inactive by default.

#### **Out of specification:**

The measured value is unreliable because an instrument specification was exceeded (e.g. electronics temperature).

This status message is inactive by default.

#### Maintenance required:

Due to external influences, the instrument function is limited. The measurement is affected, but the measured value is still valid. Plan in maintenance for the instrument because a failure is expected in the near future (e.g. due to buildup).

This status message is inactive by default.

| Code<br>Text message                     | Cause                                                                                        | Rectification                                                                                                   | DevSpec<br>State in CMD 48   |
|------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------|
| F013<br>no measured val-<br>ue available | Sensor does not detect an<br>echo during operation<br>Antenna system dirty or de-<br>fective | Check or correct installation<br>and/or parameter settings<br>Clean or exchange process<br>component or antenna | Byte 5, Bit 0 of<br>Byte 0 5 |
| F017<br>Adjustment span<br>too small     | Adjustment not within speci-<br>fication                                                     | Change adjustment according<br>to the limit values (differ-<br>ence between min. and max.<br>≥ 10 mm)           | Byte 5, Bit 1 of<br>Byte 0 5 |

## Failure



 
 Four-wire: 4 ... 20 mA/HART; 9.6 ... 48 V DC;

 20 ... 42 V AC; 50/60 Hz

 series NR 8500
 Technical information / Instruction manual



# Diagnosis, asset management and service

| Code                                                  | Cause                                                                                                                  | Rectification                                                                                                                          | DevSpec                      |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Text message                                          | Cause                                                                                                                  | Rectification                                                                                                                          | State in CMD 48              |
| F025<br>Error in the line-<br>arization table         | Values are not continuous-<br>ly rising, for example illogical<br>value pairs                                          | Check linearization table<br>Delete table/Create new                                                                                   | Byte 5, Bit 2 of<br>Byte 0 5 |
| F036<br>No operable soft-<br>ware                     | Failed or interrupted software<br>update                                                                               | Repeat software update<br>Check electronics version<br>Exchanging the electronics<br>Send instrument for repair                        | Byte 5, Bit 3 of<br>Byte 0 5 |
| F040<br>Error in the elec-<br>tronics                 | Hardware defect                                                                                                        | Exchanging the electronics<br>Send instrument for repair                                                                               | Byte 5, Bit 4 of<br>Byte 0 5 |
| F080<br>General software<br>error                     | General software error                                                                                                 | Disconnect operating volt-<br>age briefly                                                                                              | Byte 5, Bit 5 of<br>Byte 0 5 |
| F105<br>Determine meas-<br>ured value                 | The instrument is still in the<br>switch-on phase, the meas-<br>ured value could not yet be<br>determined              | Wait for the end of the<br>switch-on phase<br>Duration up to approx. 3 min-<br>utes depending on the version<br>and parameter settings | Byte 5, Bit 6 of<br>Byte 0 5 |
| F113<br>Communication<br>error                        | EMC interference                                                                                                       | Remove EMC influences                                                                                                                  | Byte 4, Bit 4 of<br>Byte 0 5 |
| F125<br>Impermissible<br>electronics tem-<br>perature | Temperature of the electron-<br>ics in the non-specified range                                                         | Check ambient temperature<br>Insulate electronics<br>Use instrument with higher<br>temperature range                                   | Byte 5, Bit 7 of<br>Byte 0 5 |
| F260<br>Error in the cali-<br>bration                 | Error in the calibration carried<br>out in the factory<br>Error in the EEPROM                                          | Exchanging the electronics<br>Send instrument for repair                                                                               | Byte 4, Bit 0 of<br>Byte 0 5 |
| F261<br>Error in the in-<br>strument settings         | Error during setup<br>False signal suppression faulty<br>Error when carrying out a re-<br>set                          | Repeat setup<br>Carry out a reset                                                                                                      | Byte 4, Bit 1 of<br>Byte 0 5 |
| F264<br>Installation/Set-<br>up error                 | Adjustment not within the<br>vessel height/measuring range<br>Max. measuring range of the<br>instrument not sufficient | Check or correct installation<br>and/or parameter settings<br>Use an instrument with bigger<br>measuring range                         | Byte 4, Bit 2 of<br>Byte 0 5 |
| F265<br>Measurement<br>function dis-<br>turbed        | Sensor no longer carries out a<br>measurement<br>Operating voltage too low                                             | Check operating voltage<br>Carry out a reset<br>Disconnect operating volt-<br>age briefly                                              | Byte 4, Bit 3 of<br>Byte 0 5 |





# Diagnosis, asset management and service

| Code<br>Text message                            | Cause                                                                                                            | Rectification                                              | DevSpec<br>State in CMD 48 |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------|
| F267<br>No executable<br>sensor software        | Sensor cannot start                                                                                              | Exchanging the electronics<br>Send instrument for repair   | -                          |
| F268<br>False signal sup-<br>pression not valid | False signal suppression was<br>applied under other measur-<br>ing conditions                                    | Create a new false signal sup-<br>pression                 |                            |
|                                                 | No false signal suppression available                                                                            | Create a new false signal sup-<br>pression                 |                            |
| F269<br>Measurement<br>function insecure        | Measurement reliability of the<br>level echo too low (change to<br>another echo pending)                         | Check or correct installation<br>and/or parameter settings |                            |
|                                                 | Amplitude difference level<br>echo for false signal sup-<br>pression too low (change to<br>another echo pending) | Check or correct installation<br>and/or parameter settings |                            |
|                                                 | Amplitude difference lev-<br>el echo to another echo too<br>low (change to another echo<br>pending)              | Check or correct installation<br>and/or parameter settings |                            |

## **Function check**

| Code<br>Text message      | Cause                  | Rectification              | DevSpec<br>State in CMD 48                             |
|---------------------------|------------------------|----------------------------|--------------------------------------------------------|
| C700<br>Simulation active | A simulation is active | Wait for the automatic end | "Simulation<br>Active" in "Stand-<br>ardized Status 0" |

# **Out of specification**

| Code<br>Text message                                  | Cause                                                                          | Rectification                                                                                                                             | DevSpec<br>State in CMD 48      |
|-------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| S600<br>Impermissible<br>electronics tem-<br>perature | Temperature of the processing<br>electronics in the non-speci-<br>fied section | Check ambient temperature<br>Insulate electronics<br>Use instrument with higher<br>temperature range                                      | Byte 23, Bit 0 of<br>Byte 14 24 |
| S601<br>Overfilling                                   | Level echo in the close range<br>not available                                 | Reduce level<br>100 % adjustment: Increase<br>value<br>Check mounting socket<br>Remove possible interfering<br>signals in the close range | Byte 23, Bit 1 of<br>Byte 14 24 |





# Diagnosis, asset management and service

| Code<br>Text message                       | Cause                                        | Rectification                                                                | DevSpec<br>State in CMD 48 |
|--------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------|----------------------------|
| S603<br>Impermissible<br>operating voltage | Operating voltage below spec-<br>ified range | Check electrical connection<br>If necessary, increase operat-<br>ing voltage |                            |

#### Maintenance

| Code<br>Text message                                        | Cause                                                                                         | Rectification                                                                                                                               | DevSpec<br>State in CMD 48      |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| M500<br>Error during the<br>reset "delivery<br>status"      | The data could not be re-<br>stored during the reset to<br>delivery status                    | Repeat reset<br>Load XML file with sensor da-<br>ta into the sensor                                                                         | Byte 24, Bit 0 of<br>Byte 14 24 |
| M501<br>Error in the<br>non-active line-<br>arisation table | Hardware error EEPROM                                                                         | Exchanging the electronics<br>Send instrument for repair                                                                                    | Byte 24, Bit 1 of<br>Byte 14 24 |
| M504<br>Error at a device<br>interface                      | Hardware defect                                                                               | Check connections<br>Exchanging the electronics<br>Send instrument for repair                                                               | Byte 24, Bit 4 of<br>Byte 14 24 |
| M505<br>No echo available                                   | Sensor does not detect an<br>echo during operation<br>Antenna dirty or defective              | Clean the antenna<br>Use a more suitable anten-<br>na/sensor<br>Remove possible false echoes<br>Optimize sensor position and<br>orientation | Byte 24, Bit 5 of<br>Byte 14 24 |
| M506<br>Installation/Set-<br>up error                       | Error during setup                                                                            | Check or correct installation<br>and/or parameter settings                                                                                  | Byte 24, Bit 6 of<br>Byte 14 24 |
| M507<br>Error in the in-<br>strument settings               | Error during setup<br>Error when carrying out a re-<br>set<br>False signal suppression faulty | Carry out reset and repeat<br>setup                                                                                                         | Byte 24, Bit 7 of<br>Byte 14 24 |

# **Rectify faults**

**Reaction when malfunction occurs** The operator of the system is responsible for taking suitable measures to rectify faults.

**Fault rectification** 

The first measures are:

- Evaluation of fault messages
- Checking the output signal
- Treatment of measurement errors





## Diagnosis, asset management and service

A smartphone/tablet with the adjustment app or a PC/notebook with the software PACTware and the suitable DTM offer you further comprehensive diagnostic possibilities. In many cases, the causes can be determined in this way and the faults eliminated.

#### 4 .... 20 mA signal

Connect a multimeter in the suitable measuring range according to the wiring plan. The following table describes possible errors in the current signal and helps to eliminate them:

| Error                                                       | Cause                                                    | Rectification                                                       |
|-------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------|
| 4 20 mA signal not sta-<br>ble                              | Fluctuating measured value                               | Set damping                                                         |
| 4 20 mA signal missing                                      | Electrical connection faulty                             | Check connection, correct, if nec-<br>essary                        |
|                                                             | Voltage supply missing                                   | Check cables for breaks; repair if necessary                        |
|                                                             | Operating voltage too low, load re-<br>sistance too high | Check, adapt if necessary                                           |
| Current signal great-<br>er than 22 mA, less than<br>3.6 mA | Sensor electronics defective                             | Replace device or send in for repair<br>depending on device version |

#### Treatment of measurement errors

The below tables show typical examples of application-related measurement errors with liquids. The measurement errors are differentiated according to the following:

- Constant level
- Filling
- Emptying

The images in column "*Error pattern*" show the real level as a broken line and the level displayed by the sensor as a continuous line.

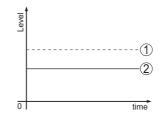



Fig. 37: Display of error images

- 1 Real level
- 2 Level displayed by the sensor





# Diagnosis, asset management and service

• Note: I If the

If the output level is constant, the cause could also be the fault setting of the current output to "*Hold value*".

If the level is too low, the reason could be a line resistance that is too high

## Measurement error with constant level

| Fault description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cause                                                                                                                                                      | Rectification                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Measured value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Min./max. adjustment not correct                                                                                                                           | Adapt min./max. adjustment                                                                                                                          |
| shows a too low or<br>too high level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Incorrect linearization curve                                                                                                                              | Adapt linearization curve                                                                                                                           |
| [equation of the second | Installation in a bypass tube or stand-<br>pipe, hence running time error (small<br>measurement error close to 100 %/<br>large error close to 0 %)         | Check parameter "Application" with<br>respect to vessel form, adapt if neces-<br>sary (bypass, standpipe, diameter).                                |
| Measured val-<br>ue jumps towards<br>0 % (liquids only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Multiple echo (vessel top, medium sur-<br>face) with amplitude higher than the<br>level echo.                                                              | Check parameter "Application", es-<br>pecially vessel top, type of medium,<br>dished bottom, high dielectric con-<br>stant, and adapt if necessary. |
| Measured val-<br>ue jumps towards<br>100 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Due to the process, the amplitude of<br>the level echo sinks<br>A false signal suppression was not car-<br>ried out                                        | Carry out a false signal suppression                                                                                                                |
| 01 5mč                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Amplitude or position of a false signal<br>has changed (e.g. condensation, build-<br>up); false signal suppression no longer<br>matches actual conditions. | Determine the reason for the changed<br>false signals, carry out false signal<br>suppression, e.g. with condensation.                               |

## Measurement error during filling

| Fault description           | Cause                                                               | Rectification                                                                                           |
|-----------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Measured val-<br>ue remains | False signals in the close range too big<br>or level echo too small | Eliminate false signals in the close range                                                              |
| unchanged during filling    | Strong foam or vortex generation<br>Max. adjustment not correct     | Check measurement situation: Anten-<br>na must protrude out of the nozzle,<br>installations             |
|                             |                                                                     | Remove contamination on the antenna                                                                     |
| 0 time                      |                                                                     | In case of interferences due to in-<br>stallations in the close range: Change<br>polarisation direction |
|                             |                                                                     | Create a new false signal suppression                                                                   |
|                             |                                                                     | Adapt max. adjustment                                                                                   |





# Diagnosis, asset management and service

| Fault description                                                                                                | Cause                                                                                                                                              | Rectification                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Measured value<br>remains in the ar-<br>ea of the bottom<br>during filling                                       | Echo from the tank bottom larger than<br>the level echo, for example, with prod-<br>ucts with D <sub>r</sub> < 2.5 oil-based, solvents             | Check parameters Medium, Vessel<br>height and Floor form, adapt if nec-<br>essary                                                                           |
| Measured value<br>remains momen-<br>tarily unchanged<br>during filling and<br>then jumps to the<br>correct level | Turbulence on the medium surface,<br>quick filling                                                                                                 | Check parameters, change if neces-<br>sary, e.g. in dosing vessel, reactor                                                                                  |
| Measured val-<br>ue jumps towards<br>0 % during filling                                                          | Amplitude of a multiple echo (vessel<br>top - medium surface) is larger than<br>the level echo.                                                    | Check parameter "Application", es-<br>pecially vessel top, type of medium,<br>dished bottom, high dielectric con-<br>stant, and adapt if necessary.         |
| al cont                                                                                                          | The level echo cannot be distinguished<br>from the false signal at a false signal<br>position (jumps to multiple echo).                            | In case of interferences due to in-<br>stallations in the close range: Change<br>polarisation direction<br>Chose a more suitable installation po-<br>sition |
|                                                                                                                  | Transverse reflection from an ex-<br>traction funnel, amplitude of the<br>transverse reflection larger than the<br>level echo                      | Direct sensor to the opposite fun-<br>nel wall, avoid crossing with the filling<br>stream.                                                                  |
| Measured value<br>fluctuates around<br>10 20 % (only<br>bulk solids)                                             | Various echoes from an uneven medi-<br>um surface, e.g. a material cone                                                                            | Check parameter "Material Type" and<br>adapt, if necessary<br>Optimize installation position and sen-<br>sor orientation                                    |
| D TO TOTAL                                                                                                       | Reflections from the medium surface<br>via the vessel wall (deflection)                                                                            | Select a more suitable installation po-<br>sition, optimize sensor orientation, e.g.<br>with a swivelling holder                                            |
| Measured value jumps towards 100 % during filling                                                                | Due to strong turbulence and foam<br>generation during filling, the amplitude<br>of the level echo sinks. Measured value<br>jumps to false signal. | Carry out a false signal suppression                                                                                                                        |





# Diagnosis, asset management and service

| Fault description                                                    | Cause                                                                                                                | Rectification                                                                                                                                     |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Measured value<br>jumps sporadical-<br>ly to 100 % during<br>filling | Varying condensation or contamination on the antenna.                                                                | Carry out a false signal suppression or<br>increase false signal suppression with<br>condensation/contamination in the<br>close range by editing. |
|                                                                      |                                                                                                                      | With bulk solids, use radar sensor with purging air connection.                                                                                   |
| Measured value<br>jumps to ≥ 100 %<br>or 0 m distance                | Level echo is no longer detected at<br>close range due to foam generation or<br>interference signals at close range. | Check measuring point: Antenna<br>should protrude out of the threaded<br>mounting socket, possible false echoes<br>through flange socket.         |
|                                                                      |                                                                                                                      | Remove contamination on the antenna                                                                                                               |
| 0 time                                                               |                                                                                                                      | Use a sensor with a more suitable an-<br>tenna                                                                                                    |

## Measurement error during emptying

| Fault description                                                                 | Cause                                                                                                                       | Rectification                                                                                                                           |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Measured val-<br>ue remains<br>unchanged in the<br>close range during<br>emptying | False signal larger than the level echo<br>Level echo too small                                                             | Eliminate false signal in the close<br>range. Check: Antenna must protrude<br>from the nozzle.                                          |
|                                                                                   |                                                                                                                             | Remove contamination on the antenna                                                                                                     |
|                                                                                   |                                                                                                                             | In case of interferences due to in-<br>stallations in the close range: Change<br>polarisation direction                                 |
|                                                                                   |                                                                                                                             | After eliminating the false signals, the<br>false signal suppression must be de-<br>leted. Carry out a new false signal<br>suppression. |
| Measured val-<br>ue jumps towards<br>0 % during emp-<br>tying                     | Echo from the tank bottom larger than the level echo, for example, with products with $\square_r < 2.5$ oil-based, solvents | Check parameters Medium type, Vessel<br>height and Floor form, adapt if nec-<br>essary                                                  |
| Measured value<br>jumps sporadical-<br>ly towards 100 %                           | Varying condensation or contamination on the antenna                                                                        | Carry out false signal suppression or<br>increase false signal suppression in the<br>close range by editing.                            |
| during emptying                                                                   |                                                                                                                             | With bulk solids, use radar sensor with purging air connection.                                                                         |





## Diagnosis, asset management and service

| Fault description                                                    | Cause                                                                        | Rectification                                                |
|----------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|
| Measured value<br>fluctuates around<br>10 20 % (only<br>bulk solids) | Various echoes from an uneven medi-<br>um surface, e.g. an extraction funnel | Check parameter "Type of medium"<br>and adapt, if necessary. |
|                                                                      | Reflections from the medium surface<br>via the vessel wall (deflection)      | Optimize installation position and sen-<br>sor orientation.  |

#### Reaction after fault rectification

Depending on the reason for the fault and the measures taken, the steps described in chapter "Setup" must be carried out again or must be checked for plausibility and completeness.

## **Exchanging the electronics module**

If the electronics module is defective, it can be replaced by the user.



In Ex applications, only instruments and electronics modules with appropriate Ex approval may be used.

If there is no electronics module available on site, one can be ordered from the agency serving you.

## Software update

The following components are required to update the instrument software:

- Instrument
- Voltage supply
- HART modem
- PC with PACTware/DTM
- Current instrument software as file

You can find the current instrument software as well as detailed information on the procedure in the download area of our homepage.

You can find information about the installation in the download file.



#### Caution:

Instruments with approvals can be bound to certain software versions. Therefore make sure that the approval is still effective after a software update is carried out.

Further information can be found on our homepage.





# Diagnosis, asset management and service

# How to proceed if a repair is necessary

If a repair should be necessary, please contact your contact person.





## Dismount

## **Dismounting steps**

To remove the device, carry out the steps in chapters "Mounting" and "Connecting to power supply" in reverse.



Warning:

When dismounting, pay attention to the process conditions in vessels or pipelines. There is a risk of injury, e.g. due to high pressures or temperatures as well as aggressive or toxic media. Avoid this by taking appropriate protective measures.

# Disposal



Pass the instrument on to a specialised recycling company and do not use the municipal collecting points.

Remove any batteries in advance, if they can be removed from the device, and dispose of them separately.

If personal data is stored on the old device to be disposed of, delete it before disposal.

If you have no way to dispose of the old instrument properly, please contact us concerning return and disposal.





## **Certificates and approvals**

## **Radio licenses**

#### Radar:

The device has been tested and approved in accordance with the current edition of the applicable country-specific norms or standards.

The confirmations as well as regulations for use can be found in the document "*Information sheet Radio licenses*" supplied or on our homepage.

## **Approvals for Ex areas**

Approved versions for use in hazardous areas are available or in preparation for the device or the device series.

You can find the relevant documents on our homepage.

## Approvals as overfill protection

Approved versions for use as part of an overfill protection system are available or in preparation for the device or the device series.

The corresponding approvals can be found on our homepage.

## Conformity

The device complies with the legal requirements of the applicable country-specific directives or technical regulations. We confirm conformity with the corresponding labelling.

The corresponding conformity declarations can be found on our homepage.

## NAMUR recommendations

NAMUR is the automation technology user association in the process industry in Germany. The published NAMUR recommendations are accepted as the standard in field instrumentation.

The device fulfils the requirements of the following NAMUR recommendations:

- NE 21 Electromagnetic compatibility of equipment
- NE 43 Signal level for fault information from measuring transducers
- NE 53 Compatibility of field devices and display/adjustment components
- NE 107 Self-monitoring and diagnosis of field devices

For further information see <u>www.namur.de</u>.





# **Certificates and approvals**

## **IT Security**

The device is available as version with IT security acc. to IEC 62443-4-2 or in preparation.

You can find the corresponding "*IT security guidelines*" as well as the certification and the "*Component Requirements*" on our homepage.





# Supplement

## Licensing information for open source software

Open source software components are also used in this device. A documentation of these components with the respective license type, the associated license texts, copyright notes and disclaimers can be found on our homepage.

## Trademark

All the brands as well as trade and company names used are property of their lawful proprietor/originator.











Printing date:

All statements concerning scope of delivery, application, practical use and operating conditions of the sensors and processing systems correspond to the information available at the time of printing. Subject to change without prior notice

#### **Technical support**

Please contact your local sales partner (address at www.uwtgroup.com). Otherwise please contact us:

UWT GmbH Westendstraße 5 87488 Betzigau Germany

Phone + 49 (0) 831 57 123 0 info@uwtgroup.com www.uwtgroup.com